Skip to main content

Application of Aptamers in Therapeutics and for Small-Molecule Detection

  • Chapter
RNA Towards Medicine

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 173))

Abstract

Nucleic acids that can bind with high affinity and specificity to target molecules are called “aptamers”. Aptamers recognise a large variety of different enzymatic methods. molecule classes. The main focus of this chapter is small molecules as targets. Aptamers are applied complementarily to antibody technologies and can substitute antibodies or small molecules wherever their different properties, such as biochemical nature or highly discriminating capacities, are advantageous. Examples of promising applications of these versatile molecules are discussed in the field of therapeutics and biotechnology with a special view to small-molecule detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed N, Thornalley PJ (2003) Quantitative screening of protein biomarkers of early glycation, advanced glycation, oxidation and nitrosation in cellular and extracellular proteins by tandem mass spectrometry multiple reaction monitoring. Biochem Soc Trans 31:1417–1422

    CAS  PubMed  Google Scholar 

  • Altria KD, Elder D (2004) Overview of the status and applications of capillary electrophoresis to the analysis of small molecules. J Chromatogr A 1023:1–14

    Article  CAS  PubMed  Google Scholar 

  • Aurup H, Williams DM, Eckstein F (1992) 2′-Fluoro-and 2′-amino-2′-deoxynucleoside 5′-triphosphates as substrates for T7 RNA polymerase. Biochemistry 31:9636–9641

    Article  CAS  PubMed  Google Scholar 

  • Baldrich E, Restrepo A, O’sullivan CK (2004) Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Anal Chem 76:7053–7063

    Article  CAS  PubMed  Google Scholar 

  • Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    Article  CAS  PubMed  Google Scholar 

  • Breaker RR (2002) Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol 13:31–39

    Article  CAS  PubMed  Google Scholar 

  • Breaker RR (2004) Natural and engineered nucleic acids as tools to explore biology. Nature 432:838–845

    Article  CAS  PubMed  Google Scholar 

  • Brody EN, Gold L (2000) Aptamers as therapeutic and diagnostic agents. J Biotechnol 74:5–13

    CAS  PubMed  Google Scholar 

  • Bruno JG, Kiel JL (2002) Use of magnetic beads in selection and detection of biotoxin aptamers by electrochemiluminescence and enzymatic methods. Biotechniques 32:178–80, 182–183

    CAS  PubMed  Google Scholar 

  • Burgstaller P, Jenne A, Blind M (2002) Aptamers and aptazymes: accelerating small molecule drug discovery. Curr Opin Drug Discov Devel 5:690–700

    CAS  PubMed  Google Scholar 

  • Chelliserrykattil J, Ellington AD (2004) Evolution of a T7 RNA polymerase variant that transcribes 2′-O-methyl RNA. Nat Biotechnol 22:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Cicortas Gunnarsson L, Nordberg Karlsson E, Albrekt AS, Andersson M, Holst O, Ohlin M (2004) A carbohydrate binding module as a diversity-carrying scaffold. Protein Eng Des Sel 17:213–221

    Article  CAS  PubMed  Google Scholar 

  • Clark SL, Remcho VT (2003) Electrochromatographic retention studies on a flavin-binding RNA aptamer sorbent. Anal Chem 75:5692–5696

    Article  CAS  PubMed  Google Scholar 

  • Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6:103–110

    Article  CAS  PubMed  Google Scholar 

  • Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem 9:2525–2531

    CAS  PubMed  Google Scholar 

  • Cox JC, Hayhurst A, Hesselberth J, Bayer TS, Georgiou G, Ellington AD (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res 30:e108

    Article  PubMed  Google Scholar 

  • Daniels DA, Sohal AK, Rees S, Grisshammer R (2002) Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1. Anal Biochem 305:214–226

    Article  CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Eulberg D, Klussmann S (2003) Spiegelmers: biostable aptamers. Chembiochem 4:979–983

    Article  CAS  PubMed  Google Scholar 

  • Eyetech Study Group (2002) Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22:143–152

    Google Scholar 

  • Famulok M (1999) Oligonucleotide aptamers that recognize small molecules. Curr Opin Struct Biol 9:324–329

    Article  CAS  PubMed  Google Scholar 

  • Famulok M, Mayer G (1999) Aptamers as tools inmolecular biology and immunology. Curr Top Microbiol Immunol 243:123–136

    CAS  PubMed  Google Scholar 

  • Famulok M, Verma S (2002) In vivo-applied functional RNAs as tools in proteomics and genomics research. Trends Biotechnol 20:462–466

    Article  CAS  PubMed  Google Scholar 

  • Famulok M, Blind M, Mayer G (2001) Intramers as promising new tools in functional proteomics. Chem Biol 8:931–939

    Article  CAS  PubMed  Google Scholar 

  • Fedor MJ (2002) The role of metal ions in RNA catalysis. Curr Opin Struct Biol 12:289–295

    CAS  PubMed  Google Scholar 

  • Glokler J, Angenendt P (2003) Protein and antibody microarray technology. J Chromatogr B Analyt Technol Biomed Life Sci 797:229–240

    CAS  PubMed  Google Scholar 

  • Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797

    Article  CAS  PubMed  Google Scholar 

  • Good PD, Krikos AJ, Li SX, Bertrand E, Lee NS, Giver L, Ellington A, Zaia JA, Rossi JJ, Engelke DR (1997) Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther 4:45–54

    Article  CAS  PubMed  Google Scholar 

  • Grate D, Wilson C (2001) Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. Bioorg Med Chem 9:2565–2570

    CAS  PubMed  Google Scholar 

  • Griffin LC, Tidmarsh GF, Bock LC, Toole JJ, Leung LL (1993) In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 81:3271–3276

    CAS  PubMed  Google Scholar 

  • Hanna R, Doudna JA (2000) Metal ions in ribozyme folding and catalysis. Curr Opin Chem Biol 4:166–170

    Article  CAS  PubMed  Google Scholar 

  • Hentze MW, Kuhn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA 93:8175–8182

    Article  CAS  PubMed  Google Scholar 

  • Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    Article  CAS  PubMed  Google Scholar 

  • Hewitt CJ, Nebe-Von-Caron G (2004) The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv Biochem Eng Biotechnol 89:197–223

    CAS  PubMed  Google Scholar 

  • Homann M, Goringer HU (2001) Uptake and intracellular transport of RNA aptamers in African trypanosomes suggest therapeutic “piggy-back” approach. Bioorg Med Chem 9:2571–2580

    CAS  PubMed  Google Scholar 

  • Inaba Y, Hamada-Sato N, Kobayashi T, Imada C, Watanabe E (2003) Determination of D-and L-alanine concentrations using a pyruvic acid sensor. Biosens Bioelectron 18:963–971

    Article  CAS  PubMed  Google Scholar 

  • Iyo M, Kawasaki H, Taira K (2002) Allosterically controllable maxizymes for molecular gene therapy. Curr Opin Mol Ther 4:154–165

    CAS  PubMed  Google Scholar 

  • Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  PubMed  Google Scholar 

  • Jellinek D, Green LS, Bell C, Lynott CK, Gill N, Vargeese C, Kirschenheuter G, McGee DP, Abesinghe P, Pieken WA, et al (1995) Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34:11363–11372

    Article  CAS  PubMed  Google Scholar 

  • Kawakami J, Imanaka H, Yokota Y, Sugimoto N (2000) In vitro selection of aptamers that act with Zn2+. J Inorg Biochem 82:197–206

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Kim MY, Lee JH, You JC, Jeong S (2002) Selection and stabilization of the RNA aptamers against the human immunodeficiency virus type-1 nucleocapsid protein. Biochem Biophys Res Commun 291:925–931

    CAS  PubMed  Google Scholar 

  • Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP (1996) Mirror-image RNA that binds D-adenosine. Nat Biotechnol 14:1112–1115

    CAS  PubMed  Google Scholar 

  • Koizumi M, Breaker RR (2000) Molecular recognition of cAMP by an RNA aptamer. Biochemistry 39:8983–8992

    Article  CAS  PubMed  Google Scholar 

  • Kubodera T, Watanabe M, Yoshiuchi K, Yamashita N, Nishimura A, Nakai S, Gomi K, Hanamoto H (2003) Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett 555:516–520

    Article  CAS  PubMed  Google Scholar 

  • Lorsch JR, Szostak JW (1994) In vitro selection of RNA aptamers specific for cyanocobalamin. Biochemistry 33:973–982

    Article  CAS  PubMed  Google Scholar 

  • Lottspeich F, Zorbos H (1998) Bioanalytik. Spektrum Akad. Verlag, Heidelberg, Berlin, New York, pp 9–463

    Google Scholar 

  • Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res 25:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Meis JE, Chen F (2002) In vitro synthesis of 2′-fluoro-modified RNA transcripts that are completely resistant to RNase A digestion using the DuraScribe ™T7 transcription kit. Epicentre Forum 9:10–11

    Google Scholar 

  • Menger M, Tuschl T, Eckstein F, Porschke D (1996) Mg(2+)-dependent conformational changes in the hammerhead ribozyme. Biochemistry 35:14710–14716

    Article  CAS  PubMed  Google Scholar 

  • Nicholls H (2003) Improving drug response with pharmacogenomics. Drug Discov Today 8:281–282

    PubMed  Google Scholar 

  • Nimjee SM, Rusconi CP, Sullenger BA (2005) APTAMERS: An Emerging Class of Therapeutics. Annu Rev Med 56:555–583

    Article  CAS  PubMed  Google Scholar 

  • Nix J, Sussman D, Wilson C (2000) The 1.3 A crystal structure of a biotin-binding pseudoknot and the basis for RNA molecular recognition. J Mol Biol 296:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Nonin-Lecomte S, Lin CH, Patel DJ (2001) Additional hydrogen bonds and base-pair kinetics in the symmetrical AMP-DNA aptamer complex. Biophys J 81:3422–3431

    CAS  PubMed  Google Scholar 

  • O’sullivan CK (2001) Aptasensors—the future of biosensing? Anal Bioanal Chem 372:44–48

    PubMed  Google Scholar 

  • Ooms M, Huthoff H, Russell R, Liang C, Berkhout B (2004) A riboswitch regulates RNA dimerization and packaging in human immunodeficiency virus type 1 virions. J Virol 78:10814–10819

    Article  CAS  PubMed  Google Scholar 

  • Patel DJ (1997) Structural analysis of nucleic acid aptamers. Curr Opin Chem Biol 1:32–46

    Article  CAS  PubMed  Google Scholar 

  • Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F (1991) Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253:314–317

    CAS  PubMed  Google Scholar 

  • Rajendran M, Ellington AD (2002) Selecting nucleic acids for biosensor applications. Comb Chem High Throughput Screen 5:263–270

    CAS  PubMed  Google Scholar 

  • Rimmele M (2003) Nucleic acid aptamers as tools and drugs: recent developments. Chembiochem 4:963–971

    Article  CAS  PubMed  Google Scholar 

  • Rimmele M, Ehrentreich-Förster E (2004) Nukleinsäuren als biochemische Fängermoleküle. BIOforum 04:68–69

    Google Scholar 

  • Roychowdhury-Saha M, Lato SM, Shank ED, Burke DH(2002) Flavin recognition by an RNA aptamer targeted toward FAD. Biochemistry 41:2492–2499

    Article  CAS  PubMed  Google Scholar 

  • Rubin B, Sonderstrup G (2004) Citrullination of self-proteins and autoimmunity. Scand J Immunol 60:112–120

    Article  CAS  PubMed  Google Scholar 

  • Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjic N (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567

    Article  CAS  PubMed  Google Scholar 

  • Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, Sullenger BA (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94

    Article  CAS  PubMed  Google Scholar 

  • Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick G Jr, Scardino E, Fay WP, Sullenger BA (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 22:1423–1428

    Article  CAS  PubMed  Google Scholar 

  • Sousa R, Padilla R (1995) A mutant T7 RNA polymerase as a DNA polymerase. EMBO J 14:4609–4621

    CAS  PubMed  Google Scholar 

  • Sudarsan N, Barrick JE, Breaker RR (2003) Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9:644–647

    Article  CAS  PubMed  Google Scholar 

  • Suess B, Fink B, Berens C, Stentz R, Hillen W (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614

    Article  CAS  PubMed  Google Scholar 

  • Sun S (2000) Technology evaluation: SELEX, Gilead Sciences Inc. Curr Opin Mol Ther 2:100–105

    CAS  PubMed  Google Scholar 

  • Sussman D, Greensides D, Reilly K, Wilson C (1999) Preliminary characterization of crystals of an in vitro evolved cyanocobalamin (vitamin B12) binding RNA. Acta Crystallogr D Biol Crystallogr 55:326–328

    Article  PubMed  Google Scholar 

  • Szabo A, Stolz L, Granzow R (1995) Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr Opin Struct Biol 5:699–705

    Article  CAS  PubMed  Google Scholar 

  • Toulme JJ, Di Primo C, Boucard D (2004) Regulating eukaryotic gene expression with aptamers. FEBS Lett 567:55–62

    Article  CAS  PubMed  Google Scholar 

  • Tucker CE, Chen LS, Judkins MB, Farmer JA, Gill SC, Drolet DW (1999) Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J Chromatogr B Biomed Sci Appl 732:203–212

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  PubMed  Google Scholar 

  • Ulrich H, Magdesian MH, Alves MJ, Colli W (2002) In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J Biol Chem 277:20756–20762

    Article  CAS  PubMed  Google Scholar 

  • Vinores SA (2003) Technology evaluation: pegaptanib, Eyetech/Pfizer. Curr Opin Mol Ther 5:673–679

    CAS  PubMed  Google Scholar 

  • Vogt M, Skerra A (2004) Construction of an artificial receptor protein (“anticalin”) based on the human apolipoprotein D. Chembiochem 5:191–199

    Article  CAS  PubMed  Google Scholar 

  • Vuyisich M, Beal PA (2002) Controlling protein activity with ligand-regulated RNA aptamers. Chem Biol 9:907–913

    Article  CAS  PubMed  Google Scholar 

  • Walter G, Bussow K, Lueking A, Glokler J (2002) High-throughput protein arrays: prospects for molecular diagnostics. Trends Mol Med 8:250–253

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang M, Yang G, Zhang D, Ding H, Wang H, Fan M, Shen B, Shao N (2003) Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol 102:15–22

    CAS  PubMed  Google Scholar 

  • White R, Rusconi C, Scardino E, Wolberg A, Lawson J, Hoffman M, Sullenger B (2001) Generation of species cross-reactive aptamers using “toggle” SELEX. Mol Ther 4:567–573

    Article  CAS  PubMed  Google Scholar 

  • White RR, Sullenger BA, Rusconi CP (2000) Developing aptamers into therapeutics. J Clin Invest 106:929–934

    CAS  PubMed  Google Scholar 

  • Wibrand F (2004) A microplate-based enzymatic assay for the simultaneous determination of phenylalanine and tyrosine in serum. Clin Chim Acta 347:89–96

    Article  CAS  PubMed  Google Scholar 

  • Wilson C, Nix J, Szostak J (1998) Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot. Biochemistry 37:14410–14419

    Article  CAS  PubMed  Google Scholar 

  • Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  CAS  PubMed  Google Scholar 

  • Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 99:15908–15913

    CAS  PubMed  Google Scholar 

  • Woodbury CP Jr, Venton DL (1999) Methods of screening combinatorial libraries using immobilized or restrained receptors. J Chromatogr B Biomed Sci Appl 725:113–137

    CAS  PubMed  Google Scholar 

  • Zaydan R, Dion M, Boujtita M (2004) Development of a new method, based on a bioreactor coupled with an L-lactate biosensor, toward the determination of a nonspecific inhibition of L-lactic acid production during milk fermentation. J Agric Food Chem 52:8–14

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Blank M, Schluesener HJ (2004) Nucleic acid aptamers in human viral disease. Arch Immunol Ther Exp (Warsz) 52:307–315

    CAS  Google Scholar 

  • Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7:55–63

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menger, M., Glökler, J., Rimmele, M. (2006). Application of Aptamers in Therapeutics and for Small-Molecule Detection. In: Erdmann, V., Barciszewski, J., Brosius, J. (eds) RNA Towards Medicine. Handbook of Experimental Pharmacology, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27262-3_18

Download citation

Publish with us

Policies and ethics