Skip to main content

Advertisement

Log in

Comprehensive model for simultaneous MRI determination of perfusion and permeability using a blood-pool agent in rats rhabdomyosarcoma

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To present a new compartmental analysis model developed to simultaneously measure tissue perfusion and capillary permeability in a tumor using MRI and a macromolecular contrast medium. Rhadomyosarcomas were implanted subcutaneously in 20 rats and studied by 1.5-T MRI using a fast gradient echo sequence (2D fast SPGR TR/TE/α 13 ms/1.2 ms/60°) after injection of a macromolecular contrast medium. The left ventricle and tumor signal intensities were converted into concentrations and modeled using compartmental analysis, yielding tumor perfusion F, distribution volume Vdistribution, volume transfer constant Ktrans, rate constant of influx kpe, and initial extraction (fraction) E. Tumor perfusion was F=43±29 ml·min−1·100 g−1. The permeability study allowed the measurement of kpe=0.37±0.12 min−1 and Ktrans=0.01±0.0031 min−1. The blood volume could be assimilated to the distribution volume (Vdistribution=2.9±1.01%) since the capillary leakage was small. The simultaneous assessment of perfusion and permeability allowed quantification of the initial extraction (fraction) E=2.34±1.05%. Quantification of both tumor perfusion and capillary leakage is feasible using MRI using a macromolecular blood pool agent. The method should improve tumor characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593

    Article  PubMed  Google Scholar 

  2. Brasch R, Turetschek K (2000) MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report. Eur J Radiol 34:148–155

    Article  PubMed  Google Scholar 

  3. Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71

    PubMed  Google Scholar 

  4. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    PubMed  Google Scholar 

  5. Hunter GJ, Hamberg LM, Choi N, Jain RK, McCloud T, Fischman AJ (1998) Dynamic T1-weighted magnetic resonance imaging and positron emission tomography in patients with lung cancer: correlating vascular physiology with glucose metabolism. Clin Cancer Res 4:949–955

    Google Scholar 

  6. Buckley DL (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 47:601–606

    Article  PubMed  Google Scholar 

  7. Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41

    PubMed  Google Scholar 

  8. Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131

    PubMed  Google Scholar 

  9. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    PubMed  Google Scholar 

  10. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    PubMed  Google Scholar 

  11. Fritz-Hansen T, Rostrup E, Sondergaard L, Ring PB, Amtorp O, Larsson HB (1998) Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn Reson Med 40:922–929

    PubMed  Google Scholar 

  12. St. Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain. I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377

    Article  PubMed  Google Scholar 

  13. Antoine E, Pauwels C, Verrelle P, Lascaux V, Poupon MF (1988) In vivo emergence of a highly metastatic tumour cell line from a rat rhabdomyosarcoma after treatment with an alkylating agent. Br J Cancer 57:469–474

    PubMed  Google Scholar 

  14. Port M, Corot C, Raynal I, Idee JM, Dencausse A, Lancelot E, Meyer E, Bonnemain B, Lautrou J (2001) Physicochemical and biological evaluation of P792, a rapid-clearance blood-pool agent for magnetic resonance imaging. Invest Radiol 36:445–454

    Article  PubMed  Google Scholar 

  15. Port M, Corot C, Rousseaux O, Raynal I, Devoldere L, Idee JM, Dencausse A, Le Greneur S, Simonot C, Meyer D (2001) P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results. MAGMA 12:121–127

    PubMed  Google Scholar 

  16. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425–448

    Article  PubMed  Google Scholar 

  17. Hittmair K, Gomiscek G, Langenberger K, Recht M, Imhof H, Kramer J (1994) Method for the quantitative assessment of contrast agent uptake in dynamic contrast-enhanced MRI. Magn Reson Med 31:567–571

    PubMed  Google Scholar 

  18. Tardivon A, Guinebretiere JM, Dromain C, Caillet H (2002) MR imaging of breast cancer with a new macocyclic blood pool agent (P792). Eur Radiol 12(Suppl 1):158

    Google Scholar 

  19. Brix G, Bahner ML, Hoffmann U, Horvath A, Schreiber W (1999) Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT-initial experience. Radiology 210:269–276

    PubMed  Google Scholar 

  20. Turetschek K, Floyd E, Shames DM, Roberts TP, Preda A, Novikov V, Corot C, Carter WO, Brasch RC (2001) Assessment of a rapid clearance blood pool MR contrast medium (P792) for assays of microvascular characteristics in experimental breast tumors with correlations to histopathology. Magn Reson Med 45:880–886

    Article  PubMed  Google Scholar 

  21. Daldrup HE, Shames DM, Husseini W, Wendland MF, Okuhata Y, Brasch RC (1998) Quantification of the extraction fraction for gadopentetate across breast cancer capillaries. Magn Reson Med 40:537–543

    PubMed  Google Scholar 

  22. Daldrup H, Shames DM, Wendland M, Okuhata Y, Link TM, Rosenau W, Lu Y, Brasch RC (1998) Correlation of dynamic contrast-enhanced magnetic resonance imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Pediatr Radiol 28:67–78

    Article  PubMed  Google Scholar 

  23. Daldrup-Link HE, Brasch RC (2003) Macromolecular contrast agents for MR mammography: current status. Eur Radiol 13:354–365

    PubMed  Google Scholar 

  24. Torlakovic G, Grover VK, Torlakovic E (2005) Easy method of assessing volume of prostate adenocarcinoma from estimated tumor area: using prostate tissue density to bridge gap between percentage involvement and tumor volume. Croat Med J 46:423–428

    PubMed  Google Scholar 

  25. DiResta GR, Lee JB, Arbit E (1991) Measurement of brain tissue specific gravity using pycnometry. J Neurosci Methods 39:245–251

    Article  PubMed  Google Scholar 

  26. Pradel C, Siauve N, Bruneteau G, Clement O, de Bazelaire C, Frouin F, Wedge SR, Tessier JL, Robert PH, Frija G, Cuenod CA (2003) Reduced capillary perfusion and permeability in human tumour xenografts treated with the VEGF signalling inhibitor ZD4190: an in vivo assessment using dynamic MR imaging and macromolecular contrast media. Magn Reson Imaging 21:845–851

    Article  PubMed  Google Scholar 

  27. Renkin E (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210

    PubMed  Google Scholar 

  28. Crone C (1963) The permeability of capillaries in various organs determined by the use of the “indicator diffusion” method. Acta Physiol Scand 58:292–305

    PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Dr. Marie France Poupon (Institut Curie, Paris, France) for providing us with the S4MH cell lines. Work supported in part by the William D. Coolidge grant of the European Congress of Radiology (C.A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cedric de Bazelaire.

Appendix

Appendix

The blood flow (F), the fractional plasma volume (νp), the volume transfer constant (Ktrans), the influx rate constant (kpe), and the extraction fraction (E) were deduced from k2,1, k3,2, and k0,2, using Fick’s general equation of mass balance, which applied to the open two-compartmental model describes the transport of a contrast medium through the plasma compartment and its leakage into the interstitial space [19]:

Equation (8) can also be written as:

$$\frac{1}{{V_{{voxel}} }} \cdot \frac{{d{\left( {q_{p} {\left( t \right)}} \right)}}}{{dt}} = F \cdot \frac{{M_{{voxel}} }}{{V_{{voxel}} }} \cdot {\left( {C_{a} {\left( t \right)} - C_{V} {\left( t \right)}} \right)} - P \cdot S \cdot \frac{{M_{{voxel}} }}{{V_{{voxel}} }} \cdot {\left( {C_{p} {\left( t \right)} - C_{e} {\left( t \right)}} \right)}$$
(9)

where Vvoxel is the volume of a voxel. Using the tissue density of the voxel (ρ=M/V) Eq. (9) becomes:

$$\frac{1} {{V_{{voxel}} }} \cdot \frac{{d{\left( {q_{p} {\left( t \right)}} \right)}}} {{dt}} = F \cdot \rho \cdot {\left( {C_{a} {\left( t \right)} - C_{V} {\left( t \right)}} \right)} - P \cdot S \cdot \rho \cdot {\left( {C_{p} {\left( t \right)} - C_{e} {\left( t \right)}} \right)}$$
(10)

By analogy with Eq. (6) of the model, Eq. (10) can be written:

$$\frac{1} {{V_{{voxel}} }} \cdot \frac{{d{\left( {q_{p} {\left( t \right)}} \right)}}} {{dt}} = F \cdot \rho \cdot C_{a} {\left( t \right)} - P \cdot S \cdot \rho \cdot {\left( {C_{p} {\left( t \right)} - C_{e} {\left( t \right)}} \right)} - F \cdot \rho \cdot C_{v} {\left( t \right)}$$
(11)

Cv(t), the concentration in venous plasma at the exit of the capillary, is assumed to be equal to the concentration in capillary plasma Cp(t) giving:

$$\frac{1} {{V_{{voxel}} }} \cdot \frac{{d{\left( {q_{p} {\left( t \right)}} \right)}}} {{dt}} = F \cdot \rho \cdot C_{a} {\left( t \right)} - P \cdot S \cdot \rho \cdot {\left( {C_{p} {\left( t \right)} - C_{e} {\left( t \right)}} \right)} - F \cdot \rho \cdot C_{p} {\left( t \right)}$$
(12)

All parameters were obtained by analogy between Eq. (6) (derived from our compartmental model used with SAAM II) and Eq. (12) (derived from general equation of mass balance) separating the flow and the permeability components:

For flow, the analogy of the amount of CM received by the capillary compartment yields:

$$V_{{voxel}} \cdot F \cdot \rho \cdot C_{a} {\left( t \right)} \Leftrightarrow k_{{2,1}} \cdot q_{a} {\left( t \right)}$$
(13)

In other words, in Eq. (13), the left side (derived from the general equation of mass balance) is considered equivalent to the right side (derived from our imaging compartmental model).

In MRI the extracellular CM concentration is measured in the whole blood volume (Cb). Therefore a correction of Cb by the hematocrit (Ht approx. 0.45) is necessary:

$$q_{a} {\left( t \right)} = V_{{voxel}} \cdot C_{a} {\left( t \right)} = V_{{voxel}} \cdot \frac{{C_{b} {\left( t \right)}}} {{1 - Ht}}$$
(14)

Using Eq. (14), Eq. (13) becomes:

$$F \cdot \rho \cdot C_{a} {\left( t \right)} \Leftrightarrow k_{{2,1}} \cdot C_{a} {\left( t \right)} = k_{{2,1}} \cdot \frac{{C_{b} {\left( t \right)}}} {{1 - Ht}}$$
(15)

The product F×ρ×Ca(t) is equivalent to the product k2,1×Cb(t)/(1-Ht). Therefore estimation of k2,1 from experimental data [Cb(t)] allows deduction of volume blood flow:

$$F \cdot \rho \Leftrightarrow \frac{{k_{{2,1}} }} {{1 - Ht}}$$
(16)

The tissue density (ρ) is assumed to be equal to 1 according to literature values [24, 25].

For permeability, the analogy of exchanges between compartments yields:

$$V_{{voxel}} \cdot P \cdot S \cdot \rho \cdot {\left( {C_{p} {\left( t \right)} - C_{e} {\left( t \right)}} \right)} \Leftrightarrow k_{{3,2}} \cdot q_{p} {\left( t \right)}$$
(17)

Replacing qp by νp×Cp(t)×Vvoxel, Eq. (17) can be simplified into:

$$P \cdot S \cdot \rho \cdot {\left( {C_{p} {\left( t \right)} - C_{e} {\left( t \right)}} \right)} \Leftrightarrow k_{{3,2}} \cdot \nu _{p} \cdot C_{p} {\left( t \right)}$$
(18)

When using a macromolecular CM with a low leakage rate, we can assume that the concentration in the extravascular extracellular space is negligible in comparison with the concentration in the capillary at the beginning of the experiment. The rate constant kpe is deduced from:

$$\frac{{P \cdot S \cdot \rho }} {{\nu _{p} }} \Leftrightarrow k_{{3,2}} {\left( t \right)}$$
(19)

P×S×ρ is equal to Ktrans, and the ratio Ktransp is equal to kpe(t).

For blood volume, the analogy of the venous output yields:

$$V_{{voxel}} \cdot F \cdot \rho \cdot C_{p} {\left( t \right)} \Leftrightarrow k_{{0,2}} \cdot q_{p} {\left( t \right)}$$
(20)

Replacing qp(t) by νp×Cp(t)×Vvoxel Eq. (20) can be simplified into:

$$F \cdot \rho \cdot C_{p} {\left( t \right)} \Leftrightarrow k_{{0,2}} \cdot \nu _{p} \cdot C_{p} {\left( t \right)}$$
(21)

The plasma volume νp is deduced as follows:

$$\nu _{p} \Leftrightarrow \frac{{F \cdot \rho }} {{k_{{0,2}} }}$$
(22)

The extraction fraction E is calculated according to the model of Renkin [27] and Crone [28] of capillary permeability such as:

$$E = 1 - \exp {\left( { - \frac{{K^{{trans}} }} {F}} \right)}$$
(23)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bazelaire, C., Siauve, N., Fournier, L. et al. Comprehensive model for simultaneous MRI determination of perfusion and permeability using a blood-pool agent in rats rhabdomyosarcoma. Eur Radiol 15, 2497–2505 (2005). https://doi.org/10.1007/s00330-005-2873-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2873-z

Keywords

Navigation