Skip to main content
Log in

MR-guided biopsies of lesions in the retroperitoneal space: technique and results

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the safety and precision of MRI-guided biopsies of retroperitoneal space-occupying tumors in an open low-field system. In 30 patients with indistinct retroperitoneal tumors [paraaortic lesion (n=20), kidney (n=2), suprarenal gland (n=3) and pancreas (n=5)] MR-guided biopsies were performed using a low-field system (0.2 T, Magnetom Concerto, Siemens, Germany). For the monitoring of the biopsies T1-weighted FLASH sequences (TR/TE=160/5 ms; 90°) were used in all patients and modified FLASH sequences (TR/TE=160/13 ms; 90°) in ten patients. After positioning of the needle in the tumors 114 biopsy specimens were acquired in coaxial technique with 16-gauge cutting needles (Somatex, Germany). The biopsies were successfully performed in all patients without vascular or organ injuries. The visualization of the aortic blood flow with MRI facilitated the biopsy procedures of paraaortic lesions. The size of the lesions ranged from 1.6 to 7.5 cm. The median distance of the biopsy access path was 10.4 cm. Adequate specimens were obtained in 28 cases (93.3%) resulting in a correct histological classification of 27 lesions (90%). In conclusion, MR-guided biopsies of retroperitoneal lesions using an open low-field system can be performed safely and accurately and is an alternative to CT-guided biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bellin MF, Roy C, Kinkel K et al (1998) Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles-initial clinical experience. Radiology 207:799–808

    PubMed  Google Scholar 

  2. Hopper K (1995) Percutaneous, radiographically guided biopsy: a history. Radiology 196:329–333

    PubMed  Google Scholar 

  3. Sheafor DH, Paulson EK, Simmons CM, DeLong DM, Nelson RC (1998) Abdominal percutaneous interventional procedures: comparison of CT and US guidance. Radiology 207:705–710

    PubMed  Google Scholar 

  4. Schulz T, Puccini S, Schneider J, Kahn T (2004) Interventional and intraoperative MR: review and update of techniques and clinical experience. Eur Radiol 14:2212–2227

    Article  PubMed  Google Scholar 

  5. Zangos S, Kiefl D, Eichler K, Engelmann K, Heller M, Herzog C, Mack MG, Jacobi V, Vogl TJ (2003) MR-guided biopsies of undetermined liver lesions: technique and results. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 175:688–694

    Article  PubMed  Google Scholar 

  6. Sofocleous C, Schubert J, Brown K, Brody L, Covey A, Getrajdman G (2004) CT-guided transvenous or transcaval needle biopsy of pancreatic and peripancreatic lesions. J Vasc Interv Radiol 15:1099–1104

    PubMed  Google Scholar 

  7. Wutke R, Schmid A, Fellner F, Horbach T, Kastl S, Papadopoulos T, Hohenberger W, Bautz W (2001) CT-guided percutaneous core biopsy: effective accuracy, diagnostic utility and effective costs. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173:1025–1033

    Article  PubMed  Google Scholar 

  8. Harisinghani MG, Saini S, Weissleder R, Hahn PF, Yantiss RK, Tempany C, Wood BJ, Mueller PR (1999) MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathologic correlation. AJR Am J Roentgenol 172:1347–1351

    PubMed  Google Scholar 

  9. Matalon TA, Silver B (1990) US guidance of interventional procedures. Radiology 174:43–47

    PubMed  Google Scholar 

  10. Charboneau JW, Reading CC, Welch TJ (1990) CT and sonographically guided needle biopsy: current techniques and new innovations. AJR Am J Roentgenol 154:1–10

    PubMed  Google Scholar 

  11. Dupuy DE, Rosenberg AE, Punyaratabandhu T, Tan MH, Mankin HJ (1998) Accuracy of CT-guided needle biopsy of musculoskeletal neoplasms. AJR Am J Roentgenol 171:759–762

    PubMed  Google Scholar 

  12. Zangos S, Eichler K, Engelmann K et al (2004) MR-guided transgluteal biopsies with an open low-field system in patients with clinically suspected prostate cancer: technique and preliminary results. Eur Radiol 15:174–182

    Article  PubMed  Google Scholar 

  13. Adam G, Bucker A, Nolte-Ernsting C, Tacke J, Gunther RW (1999) Interventional MR imaging: percutaneous abdominal and skeletal biopsies and drainages of the abdomen. Eur Radiol 9:1471–1478

    Article  PubMed  Google Scholar 

  14. Carlson SK, Bender CE, Classic KL, Zink FE, Quam JP, Ward EM, Oberg AL (2001) Benefits and safety of CT fluoroscopy in interventional radiologic procedures. Radiology 219:515–520

    PubMed  Google Scholar 

  15. Arellano R, Boland G, Mueller P (2000) Adrenal biopsy in a patient with lung cancer: imaging algorithm and biopsy indications, technique, and complications. AJR Am J Roentgenol 175:1613–1617

    PubMed  Google Scholar 

  16. Daly B, Krebs TL, Wong-You-Cheong JJ, Wang SS (1999) Percutaneous abdominal and pelvic interventional procedures using CT fluoroscopy guidance. AJR Am J Roentgenol 173:637–644

    PubMed  Google Scholar 

  17. Froelich JJ, Ishaque N, Saar B, Regn J, Walthers EM, Mauermann F, Klose KJ (1999) Control of percutaneous biopsy with CT fluoroscopy. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 170:191–197

    PubMed  Google Scholar 

  18. Silverman SG, Tuncali K, Adams DF, Nawfel RD, Zou KH, Judy PF (1999) CT fluoroscopy-guided abdominal interventions: techniques, results, and radiation exposure. Radiology 212:673–681

    PubMed  Google Scholar 

  19. Nawfel R, Judy P, Silverman S, Hooton S, Tuncali K, Adams D (2000) Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology 216:180–184

    PubMed  Google Scholar 

  20. Lufkin RB, Gronemeyer DH, Seibel RM (1997) Interventional MRI: update. Eur Radiol 7:187–200

    Article  Google Scholar 

  21. Konig CW, Pereira PL, Trubenbach J, Fritz J, Duda SH, Schick F, Claussen CD (2003) MR imaging-guided adrenal biopsy using an open low-field-strength scanner and MR fluoroscopy. AJR Am J Roentgenol 180:1567–1570

    PubMed  Google Scholar 

  22. Schweiger GD, Yip VY, Brown BP (2000) CT fluoroscopic guidance for percutaneous needle placement into abdominopelvic lesions with difficult access routes. Abdom Imaging 25:633–637

    Article  PubMed  Google Scholar 

  23. Frahm C, Gehl HB, Melchert UH, Weiss HD (1996) Visualization of magnetic resonance-compatible needles at 1.5 and 0.2 Tesla. Cardiovasc Intervent Radiol 19:335–340

    Article  PubMed  Google Scholar 

  24. Ladd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC (1996) Biopsy needle susceptibility artifacts. Magn Reson Med 36:646–651

    Google Scholar 

  25. Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR Am J Roentgenol 166:1337–1345

    PubMed  Google Scholar 

  26. Alanen J, Keski-Nisula L, Blanco-Sequeiros R, Tervonen O (2004) Cost comparison analysis of low-field (0.23 T) MRI- and CT-guided bone biopsies. Eur Radiol 14:123–128

    Article  PubMed  Google Scholar 

  27. Langen HJ, Kugel H, Ortmann M, Noack M, de Rochemont RM, Landwehr P (2001) Functional capacity of MRI-compatible biopsy needles in comparison with ferromagnetic biopsy needles. In vitro studies. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173:658–662

    Article  PubMed  Google Scholar 

  28. Sklair-Levy M, Lebensart P, Applbaum Y et al (2001) Percutaneous image-guided needle biopsy in children-summary of our experience with 57 children. Pediatr Radiol 31:732–736

    Article  PubMed  Google Scholar 

  29. Hussain H, Kingston J, Domizio P, Norton A, Reznek R (2001) Imaging-guided core biopsy for the diagnosis of malignant tumors in pediatric patients. AJR Am J Roentgenol 176:43–47

    PubMed  Google Scholar 

  30. Hoffer F (2005) Interventional radiology in pediatric oncology. Eur J Radiol 53:3–13

    Article  PubMed  Google Scholar 

  31. Hohenberger W, Kastl S (2000) Neoadjuvant and adjuvant therapy of ductal pancreatic carcinoma. Zentralbl Chir 125:348–355

    PubMed  Google Scholar 

  32. Demharter J, Muller P, Wagner T, Schlimok G, Haude K, Bohndorf K (2001) Percutaneous core-needle biopsy of enlarged lymph nodes in the diagnosis and subclassification of malignant lymphomas. Eur Radiol 11:276–283

    Article  PubMed  Google Scholar 

  33. Ghaye B, Dondelinger RF, Dewe W (1999) Percutaneous CT-guided lung biopsy: sequential versus spiral scanning. A randomized prospective study. Eur Radiol 9:1317–1320

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zangos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zangos, S., Eichler, K., Wetter, A. et al. MR-guided biopsies of lesions in the retroperitoneal space: technique and results. Eur Radiol 16, 307–312 (2006). https://doi.org/10.1007/s00330-005-2870-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2870-2

Keywords

Navigation