Skip to main content

A Comparative Survey on Three-Dimensional Reconstruction of Medical Modalities Based on Various Approaches

  • Conference paper
  • First Online:
Information Systems Design and Intelligent Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 862))

Abstract

The area of three-dimensional reconstructions has made advances in the recent years. Image reconstruction is the mathematical process which converts the signals obtained from the scanning machine into an image. Particularly in the medical field, the reconstructed images aid in the surgery and research. This survey provides an overview of three-dimensional reconstruction techniques in medical images using various imaging modalities like MRI, CT, biplanar radiography, and light microscopy along with the related disease. The reconstruction techniques such as Marching Cubes, Delaunay’s Triangulation, Outlier Removal, Edge Enhancement and Binarization, False Positive Pruning, Contours, Support Vector Machines, Poisson Surface Reconstruction, Dictionary Learning, and Parametric Models are briefly described. The advantages and disadvantages of each technique are discussed and some possible future directions are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Landes, F. Weichert, P. Geis, F. Helga, M. Wagner, Evaluation of two 3D virtual computer reconstructions for comparison of cleft lip and palate to normal fetal microanatomy. Anat. Rec. 288, 248–262 (2006)

    Article  Google Scholar 

  2. C.S. Wang, W.H. Wang, M.C. Lin, STL rapid prototyping bio-CAD model for CT medical image segmentation. Comput. Ind. 61, 187–197 (2010)

    Article  Google Scholar 

  3. L.T. De Paolis, M. Pulimeno, G. Aloisio, Visualization and interaction system for surgical planning, in ed. by V. Luzar-Stiffler, I. Jarec, Z. Bekic, Proceedings of the 32nd International Conference on Information Technology Interfaces (ITI 2010), Cavtat/Dubrovnik, Croatia, June 21–24, 1st Ed. Zagreb, Croatia: University of Zagreb, University Computing Centre, pp. 269–274 (2010)

    Google Scholar 

  4. W. Lamadé, G. Glombitza, L. Fischer, P. Chiu, C.E. Cárdenas, M. Thorn, H.P. Meinzer, L. Grenacher, H. Bauer, T. Lehnert, C. Herfarth, The impact of 3-dimensional reconstructions on operation planning in liver surgery. Arch. Surg. (Chicago, Ill.: 1960) 135(11), 1256–1261 (2000)

    Google Scholar 

  5. H. Lang, A. Radtke, M. Hindennach, T. Schroeder, N.R. Frühauf, M. Malagó, H. Bourquain, H.-O. Peitgen, K.J. Oldhafer, C.E. Broelsch, Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative strategy in major hepatic resection. Arch. Surg. (Chicago, Ill.: 1960) 140(7), 629–638 (2005)

    Article  Google Scholar 

  6. C. Hansen, S. Zidowitz, B. Preim, Impact of model-based risk analysis for liver surgery planning. Int. J. Comput. Assist. Radiol. Surg. 9(3), 473–480 (2014)

    Article  Google Scholar 

  7. P. Lamata, F. Lamata, V. Sojar, P. Makowski, L. Massoptier, S. Casciaro, W. Ali, T. Stüdeli, J. Declerck, O.J. Elle, B. Edwin, Use of the resection map system as guidance during hepatectomy. Surg. Endosc. 24(9), 2327–2337 (2010)

    Article  Google Scholar 

  8. M.S. Nizam, B.J.J. Abdullah, N. Kwan-Hoong, A.C. Ahmad, Magnetic resonance imaging: Health effects and safety, in Proceedings of the International Conference on NonIonizing Radiation at UNITEN ICNIR2003, (ICNIR2003), 20 Oct (2003)

    Google Scholar 

  9. A. Berger, Science editor Article on Magn. Reson. Imaging BMJ 324(7328), 35. PMCID: PMC1121941, US National Library of Medicine National Institutes of Health (2002)

    Google Scholar 

  10. M. Zhao, D.A. Beauregard, L. Loizou, B. Davletov, K.M. Brindle, Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent, MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK. Nat. Med. 7, 1241–1244 (2001)

    Google Scholar 

  11. G.T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections (Springer Publishing Company, Incorporated, 2009)

    Book  MATH  Google Scholar 

  12. P. Gamage, S.Q. Xie, P. Delmas, Diagnostic radiograph based bone reconstruction framework: application to the femur. Comp. Med. Imag. Graph. 35, 427–437 (2011)

    Article  Google Scholar 

  13. M. Yazici, E.R. Acaroglu, A. Alanay, V. Deviren, A. Cila, A. Surat, Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J. Pediatr. Orthop. 21(2), 252–256 (2001)

    Google Scholar 

  14. E. Melhem, A. Assi, R. El Rachkidi, I. Ghanem, EOS® biplanar X-ray imaging: concept, developments, benefits, and limitations. J. Child. Orthop. 10(1), 1–14 (2016)

    Article  Google Scholar 

  15. K.M. Woods, C. Fischer, M.K. Cheezum, E.A. Hulten, B. Nguyen, T.C. Villines, The prognostic significance of Coronary CT angiography. Curr. Cardiol. Rep. 14(1), 7–16 (2012)

    Article  Google Scholar 

  16. W. Lorensen, H. Cline, Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  17. M.P. Arakeri, G. Ram Mohana Reddy, An effective and efficient approach to 3D reconstruction and quantification of brain tumor on magnetic resonance images. Int. J. Signal Process. Image Process. Pattern Recogn. 6, 135–142 (2013)

    Google Scholar 

  18. C. Gnonnou, N. Smaoui, Segmentation and 3D reconstruction of MRI images for breast cancer detection, in International Image Processing Applications and Systems Conference (2014)

    Google Scholar 

  19. P.A. Nugroho, D.K. Basuki, R. Sigit, 3D heart image reconstruction and visualization with marching cubes algorithm, in Knowledge Creation and Intelligent Computing, pp. 35–41 (2016)

    Google Scholar 

  20. V.I. Kigka, G. Rigas, A. Sakellarios, P. Siogkas, I.O. Andrikos, T.P. Exarchos, D. Loggitsi, C.O. Parodi, Dimitrios I. Fotiadis.: 3D reconstruction of coronary arteries and atherosclerotic plaques based on computed tomography angiography images. Biomed. Signal Process. Control 40, 286–294 (2018)

    Article  Google Scholar 

  21. M.J. Budoff, Assessment of coronary artery disease by cardiac computed tomography a scientific statement from the American heart association committee on cardiovascular imaging and intervention, council on cardiovascular radiology and intervention, and committee on cardiac imaging, council on clinical cardiology. Circulation 114(16), 1761–1791 (2006)

    Google Scholar 

  22. A.S. Bharathi, D. Manimegalai, 3D Digital reconstruction of brain tumor from MRI scans using Delaunay triangulation and patches. ARPN J. Eng. Appl. Sci. 10, 9227–9232 (2015)

    Google Scholar 

  23. P. García-López, V. García-Marín, M. Freire, Dendritic spines and development: towards a unifying model of spinogenesis—a present day review of Cajal’s histological slides and drawings. Neural Plas. 2010, 1–29 (2010)

    Article  Google Scholar 

  24. P. Penzes, M.E. Cahill, K.A. Jones, J.-E. VanLeeuwen, K.M. Woolfrey, Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293 (2011)

    Article  Google Scholar 

  25. R. Reberger, A. Dall’Oglio, C.R. Jung, A.A. Rasia-Filho, Structure and diversity of human dendritic spines evidenced by a new three-dimensional reconstruction procedure for Golgi staining and light microscopy. J. Neurosci. Methods 293, 27–36 (2018)

    Article  Google Scholar 

  26. Z. De-xin, A method for brain 3D surface reconstruction from MR images. Optoelectron. Lett. 10(5), 383–386 (2014)

    Article  Google Scholar 

  27. J. Zhang, L. Lv, X. Shi, Y. Wang, F. Guo, Y. Zhang, H. Li, 3-D Reconstruction of the Spine from biplanar radiographs based on contour matching using the hough transform. IEEE Trans. Biomed. Eng. 60(7), 1954–1962 (2013)

    Article  Google Scholar 

  28. A. Angelopoulou, A. Psarrou, J. Garcia-Rodriguez, S. Orts-Escolano, J.A. Lopez, K. Revett, 3D reconstruction of medical images from slices automatically landmarked with growing neural Models. Neurocomputing 150, 16–25 (2015)

    Article  Google Scholar 

  29. L. Manevitz, M. Yousef, One-class svms for document classification. J. Mach. Learn. Res. 2, 139–154 (2001)

    MATH  Google Scholar 

  30. L. Wang, G. Xu, L. Guo, X. Liu, S. Yang, 3D reconstruction of head MRI based on one class support vector machine with immune algorithm, in Proceedings of 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society, pp. 6015–6018 (2007)

    Google Scholar 

  31. F. Lecron, J. Boisvert, S. Mahmoudi, H. Labelle, M. Benjelloun, Three-dimensional spine model reconstruction using one-class SVM regularization. IEEE Trans. Biomed. Eng. 60(11), 3256–3264 (2013)

    Article  Google Scholar 

  32. L. Guo, Y. Li, D. Miao, L. Zhao, W. Yan, X. Shen, 3-D Reconstruction of Encephalic Tissue in MR Images Using Immune Sphere-Shaped SVMs. IEEE Trans. Magn. 47(5), 870–873 (2011)

    Article  Google Scholar 

  33. V. Leonardi, V. Vidal, J. Mari, M. Daniel, 3D reconstruction from CT-scan volume dataset application to kidney modeling, in Proceedings of the 27th Spring Conference on Computer Graphics, vol D, pp. 111–120 (2011)

    Google Scholar 

  34. H.H. Khaleel, R.O.K. Rahmat, D.M. Zamrin, R. Mahmod, N. Mustapha, 3D surface reconstruction of coronary artery trees for vessel locations’ detection. Arab J. Sci. Eng. 39, 1749–1773 (2014)

    Article  Google Scholar 

  35. R. Palomara, F.A. Cheikh, B. Edwin, A. Beghdadhi, O.J. Elle, Surface reconstruction for planning and navigation of liver resections. Comput. Med. Imaging Graph. 53, 30–42 (2016)

    Article  Google Scholar 

  36. B. Zhang, X. Wang, X. Liang, J. Zheng, 3D Reconstruction of human bones based on dictionary learning. Med. Eng. Phys. 49,163–170 (2017)

    Article  Google Scholar 

  37. D.M. Pomero, S. Laporte, J. A. de Guise, W. Skalli, Fast accurate stereo-radiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin. Biomech. 19, 240–247 (2004)

    Article  Google Scholar 

  38. L. Humbert, J.A. De Guise, B. Aubert, B. Godbout, W. Skalli, 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med. Eng. Phys. 31, 681–687 (2009)

    Article  Google Scholar 

  39. Y.S. Jung, H.J. Kim, S.W. Choi, J.W. Kang, I.H. Cha, Regional thickness of parietal bone in Korean adults. Int. J. Ora. Maxillofac Surg. 32, 638–641 (2003)

    Article  Google Scholar 

  40. N. Lynnerup, Cranial thickness in relation to age, sex and general body build in a Danish forensic sample. Forensic Sci. Int. 117, 45–51 (2001)

    Article  Google Scholar 

  41. J.H. Kidder, A.C. Durband, A re-evaluation of the metric diversity within Homoerectus. J. Hum. Evol. 46, 299–315 (2004)

    Article  Google Scholar 

  42. H.J. Sommer, R.B. Eckhardt, T.Y. Shiang, Superquadric modeling of cranial and cerebral shape and asymmetry. Am. J. Phys. Anthropol. 129, 189–195 (2006)

    Article  Google Scholar 

  43. C.P. Laurent, E. Jolivet, J. Hodel, P. Decq, W. Skalli, New method for 3D reconstruction of the human cranial vault from CT-scan data. Med. Eng. Phys. 33, 1270–1275 (2011)

    Article  Google Scholar 

  44. Y. Chaibi, T. Cresson, B. Aubert, J. Hausselle, P. Neyret, O. Hauger, J. A. de Guise, W. Skalli, Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs. Med. Eng. Phys. 35, 1703–1712 (2013)

    Google Scholar 

  45. S. Quijano, A. Serrurier, B. Aubert, S. Laporte, P. Thoreux, W. Skalli, Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs. Med. Eng. Phys. 35, 1703–1712 (2013)

    Article  Google Scholar 

  46. S. Kumar, K. Prabhakar Nayak, K.S. Hareesha, Improving visibility of stereo-radiographic spine reconstruction with geometric inferences. J. Digit Imaging 29, 226–234 (2016)

    Article  Google Scholar 

  47. S. Kadoury, F. Cheriet, H. Labelle, Personalized X-Ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models. IEEE Trans. Med. Imaging 28(9), 1422–1435 (2009)

    Article  Google Scholar 

  48. J. Dworzak, H. Lamecker, J. von Berg, T. Klinder, C. Lorenz, D. Kainmüller, 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model. Int. J. Comput. Assist. Radiol. Surg. 5, 111–124 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushitha Susan Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joseph, S.S., Aju, D. (2019). A Comparative Survey on Three-Dimensional Reconstruction of Medical Modalities Based on Various Approaches. In: Satapathy, S., Bhateja, V., Somanah, R., Yang, XS., Senkerik, R. (eds) Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, vol 862. Springer, Singapore. https://doi.org/10.1007/978-981-13-3329-3_21

Download citation

Publish with us

Policies and ethics