Skip to main content
Log in

Dose reduction in multidetector CT of the urinary tract. Studies in a phantom model

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

A novel ureter phantom was developed for investigations of image quality and dose in CT urography. The ureter phantom consisted of a water box (14 cm×32 cm×42 cm) with five parallel plastic tubes (diameter 2.7 mm) filled with different concentrations of contrast media (1.88–30 mg iodine/ml). CT density of the tubes and noise of the surrounding water were determined using two multidetector scanners (Philips MX8000 with four rows, Siemens Sensation 16 with 16 rows) with varying tube current–time product (15–100 mAs per slice), voltage (90 kV, 100 kV, 120 kV), pitch (0.875–1.75), and slice thickness (1 mm, 2 mm, 3.2 mm). Contrast-to-noise ratio as a parameter of image quality was correlated with dose (CTDI) and was compared with image evaluation by two radiologists. The CT densities of different concentrations of contrast media and contrast-to-noise ratio were significantly higher when low voltages (90 kV versus 120 kV, 100 kV versus 120 kV) were applied. Smaller slice thickness (1 mm versus 2 mm) did not change CT density but decreased contrast-to-noise ratio due to increased noise. Contrast phantom studies showed favourable effects of low tube voltage on image quality in the low dose range. This may facilitate substantial dose reduction in CT urography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shrimpton PC, Jones DG, Hillier MC, Wall BF, LeHeron JC, Faulkner K (1991) Survey of CT practice of the UK. Part 2. Dosimetric aspects. NRPB-249. HMSO, London

    Google Scholar 

  2. Galanski M, Nagel HD, Stamm G (2002) Practice of CT radiation exposure in the Federal Republic of Germany. Results of a national survey 1999. ZVEI, Central Federation of Electromedical Technics, Frankfurt

    Google Scholar 

  3. Barnes TB, Lakshminarayanan AV (1989) Computed tomography: physical principles and image quality considerations. In: Lee JKT, Sagel SS, Stanley RJ (eds). Computed body tomography. Raven Press, New York pp 1–21

    Google Scholar 

  4. Heneghan JP, McGuire KA, Leder RA, DeLong DM, Yoshizumi T, Nelson RC (2003) Helical CT for nephrolithiasis and ureterolithiasis: comparison of conventional and reduced radiation-dose techniques. Radiology 229:575–580

    Article  PubMed  Google Scholar 

  5. Tack D, Sourtzis S, Delpierre I, DeMartelaer V, Gevenois PA (2003) Low-dose unenhanced multidetector CT of patients with suspected renal colic. AJR Am J Roentgenol 180:305–311

    PubMed  Google Scholar 

  6. Spielmann AL, Heneghan JP, Lee LJ, Yoshizumi T, Nelson RC (2002) Decreasing the radiation dose for renal stone CT: a feasibility study of single- and multidetector CT. AJR Am J Roentgenol 178:1058–1062

    PubMed  Google Scholar 

  7. Hamm M, Knöpfle E, Wartenberg S, Wawroschek F, Weckermann D, Harzmann R (2002) Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain. J Urol 167:1687–1691

    Article  PubMed  Google Scholar 

  8. Tublin ME, Murphy ME, Delong DM, Tessler FN, Kliewer MA (2002) Conspicuity of renal calculi at unenhanced CT: effects of calculus composition and size and CT technique. Radiology 225:91–96

    Article  PubMed  Google Scholar 

  9. O’Malley ME, Hahn PF, Yoder IC, Gazelle GS, McGovern FJ, Mueller PR (2003) Comparison of excretory phase, helical computed tomography with intravenous urography in patients with painless haematuria. Clin Radiol 58:294–300

    Article  Google Scholar 

  10. Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolaou K, Suess C, Weber C, Reiser M, Becker C (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improves vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341

    Article  PubMed  CAS  Google Scholar 

  11. European Commission (1999) European guidelines on quality criteria for computed tomography. Report. EUR 16262 EN. Office for Official Publications of the European Communities, Luxemburg pp 69–78

    Google Scholar 

  12. Scheck R, Coppenrath EM, Baeuml A, Hahn K (1998) Radiation dose and image quality in spiral computed tomography: results of a multicenter study at eight radiological institutions. Radiat Prot Dosimetry 80:283–286

    Google Scholar 

  13. Nagel HD, Galanski M , Hidajat N, Maier W, Schmidt T (2002) Radiation exposition in computer tomography—basics, influence factors, dose calculation, optimization, data, concepts. CTB Publications, Hamburg

    Google Scholar 

  14. Hidajat N, Vogl T, Schroeder RJ, Felix R (1996) Calculated organ doses and effective dosage for computerized tomography examination of the thorax and abdomen: are these doses realistic! Fortschr Rontgenstr 164:382–387

    Article  CAS  Google Scholar 

  15. McNicholas MM, Raptopoulos VD, Schwartz RK, et al (1998) Excretory phase CT urography for opacification of the urinary collecting system. AJR Am J Roentgenol 170:1261–1267

    PubMed  CAS  Google Scholar 

  16. Grossfeld GD, Litwin MS, Wolf JS, Hricak H, Schuler CL, Agerter DC, Carroll PR (2001) Evaluation of asymptomatic microscopic hematuria in adults: The American Urological Association Best Practice Policy—Part II: Patient evaluation, cytology, voided markers, imaging, cystoscopy, nephrology evaluation, and follow-up. Urology 57:604–610

    Article  PubMed  CAS  Google Scholar 

  17. Yuh BL, Cohan RH (1999) Different phases of renal enhancement: role in detecting and characterizing renal masses during helical CT. AJR Am J Roentgenol 173:747–755

    PubMed  CAS  Google Scholar 

  18. Lang EK, Macchia RJ, Thomas R, Watson RA, Marberger M, Lechner G, Gayle B, Richter F (2003) Improved detection of renal pathologic features on multiphasic helical CT compared with IVU in patients presenting with microscopic hematuria. Urology 61:528–532

    Article  PubMed  Google Scholar 

  19. Smith RC, Rosenfield T, Choe KA, et al (1995) Acute flank pain: comparison of non-contrast-enhanced CT and intravenous urography. Radiology 194:789–794

    PubMed  CAS  Google Scholar 

  20. Nolte-Ernsting C, Staatz G, Wildberger J, Adam G (2003) MR-urography and CT urography: principles, examination techniques, applications. Fortschr Rontgenstr 175:211–222

    Article  CAS  Google Scholar 

  21. Perlman ES, Rosenfield AT, Wexler JS, Glickman MG (1996) CT urography in the evaluation of urinary tract disease. J Comput Assist Tomogr 20:620–626

    Article  PubMed  CAS  Google Scholar 

  22. Maudgil DD, McHugh K (2002) The role of computed tomography in modern paediatric uroradiology. Eur J Radiol 43:129–138

    Article  PubMed  CAS  Google Scholar 

  23. Foley WD (2003) Renal MDCT. Eur J Radiol 45:73–78

    Article  Google Scholar 

  24. Kalra MK, Maher MM, Sahani DV, Blake M, Saini S (2002) Current status of multidetector computed tomography urography in imaging of the urinary tract. Curr Probl Diagn Radiol 31:210–221

    Article  PubMed  Google Scholar 

  25. Raptopoulos V, McNamara A (2005) Improved pelvicalyceal visualization with multidetector computed tomography urography, comparison with helical computed tomography. Eur Radiol 15:1834–1840

    Article  PubMed  CAS  Google Scholar 

  26. Nawfel RD, Judy PH, Schleipman AR, Silverman SG (2004) Patient radiation dose at CT urography and conventional urography. Radiology 232:126–132

    Article  PubMed  Google Scholar 

  27. Sheafor DH, Hertzberg BS, Freed KS, et al (2000) Non-enhanced helical CT and US in the emergency evaluation of patients with renal colic: prospective comparison. Radiology 217:792–797

    PubMed  CAS  Google Scholar 

  28. Starck G, Lönn L, Cederblad A, Forssell-Aronsson E, Sjöström L, Alpsten M (2002) A method to obtain the same levels of CT image noise for patients for various sizes, to minimize radiation dose. Br J Radiol 75:140–150

    PubMed  CAS  Google Scholar 

  29. Olcott EW, Sommer FG, Napel S (1997) Accuracy of detection and measurement of renal calculi: in vitro comparison of three-dimensional spiral-CT, radiography, and nephrotomography. Radiology 204:19–25

    PubMed  CAS  Google Scholar 

  30. Seltzer SM (1993) Calculation of photo mass energy-transfer and mass energy absorption coefficients. Radiat Res 136:147–170

    Article  PubMed  CAS  Google Scholar 

  31. McCollough CH, Brusewitz MR, Vrtiska TJ, King BF, LeRoy AJ, Quam JP, Hattery RR (2001) Image quality and dose comparison among screen-film, computed , and CT scanned projection radiography: application to CT urography. Radiology 221:395–403

    Article  PubMed  CAS  Google Scholar 

  32. Ohnesorge B, Flohr T, Schaller S, et al (1999) Technical basics and applications of multislice CT. Radiologe 39:923–931

    Article  PubMed  CAS  Google Scholar 

  33. Gkanatsios NA, Huda W, Peter KR (2002) Effects of radiographic techniques (kVp and mAs) on image quality and patient doses in digital subtraction angiography. Med Phys 29:1643–1650

    Article  PubMed  Google Scholar 

  34. Tzedakis A, Damilakis J, Perisinakis K, Statakis J, Gourtsoyiannis N (2005) The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations. Med Physic 32:1621–1629

    Article  CAS  Google Scholar 

  35. Meindl T, Coppenrath E, Kahlil R, Mueller-Lisse UL, Reiser MF, Mueller-Lisse UG (2006) CT urography: retrospective determination of optimal delay time after intravenous contrast administration. Eur Radiol, in press

Download references

Acknowledgement

Parts of the work presented are based on results of doctoral work in preparation by Rhami Khalil at the Medical Faculty, University of Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Coppenrath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppenrath, E., Meindl, T., Herzog, P. et al. Dose reduction in multidetector CT of the urinary tract. Studies in a phantom model. Eur Radiol 16, 1982–1989 (2006). https://doi.org/10.1007/s00330-005-0138-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-0138-5

Keywords

Navigation