Skip to main content
Log in

Estimation of radiation exposure in low-dose multislice computed tomography of the heart and comparison with a calculation program

  • Computer Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the achievable organ dose savings in low-dose multislice computed tomography (MSCT) of the heart using different tube voltages (80 kVp, 100 kVp, 120 kVp) and compare it with calculated values. A female Alderson-Rando phantom was equipped with thermoluminescent dosimeters (TLDs) in five different positions to assess the mean doses within representative organs (thyroid gland, thymus, oesophagus, pancreas, liver). Radiation exposure was performed on a 16-row MSCT scanner with six different routine scan protocols: a 120-kV and a 100-kV CT angiography (CTA) protocol with the same collimation, two 120-kV Ca-scoring (CS) protocols with different collimations and two 80-kV CS protocols with the same collimation as the 120-kV CS protocols. Each scan protocol was repeated five times. The measured dose values for the organs were compared with the values calculated by a commercially available computer program. Directly irradiated organs, such as the esophagus, received doses of 34.7 mSv (CTA 16×0.75 120 kVp), 21.9 mSv (CTA 16×0.75 100 kVp) and 4.96 mSv (CS score 12×1.5 80 kVp), the thyroid as an organ receiving only scattered radiation collected organ doses of 2.98 mSv (CTA 16×0.75 120 kVp), 1.97 mSv (CTA 16×0.75 100 kVp) and 0.58 mSv (CS score 12×1.5 80 kVp). The measured relative organ dose reductions from standard to low-kV protocols ranged from 30.9% to 55.9% and were statistically significant (P<0.05). The comparison with the calculated organ doses showed that the calculation program can predict the relative dose reduction of cardiac low photon-energy protocols precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipton MJ, Higgins CB, Farmer D, Boyd DP (1984) Cardiac imaging with a high-speed cine-CT scanner: preliminary results. Radiology 152:579–582

    PubMed  CAS  Google Scholar 

  2. Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H (2004) Performance evaluation of a 64-slice CT system with z-flying focal spot. Fortschr Rontgenstr 176:1803–1810

    Article  CAS  Google Scholar 

  3. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PMT, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  4. Hunold P, Vogt FM, Schmermund A, Debatin JF, Kerkhoff G, Budde T, Erbel R, Ewen K, Barkhausen J (2003) Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology 226:145–152

    Article  PubMed  Google Scholar 

  5. Trabold T, Buchgeister M, Kuttner A, Heuschmid M, Kopp AF, Schroder S, Claussen CD (2003) Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Fortschr Rontgenstr 175:1051–1055

    Article  CAS  Google Scholar 

  6. Hohl C, Mahnken AH, Klotz E, Das M, Stargardt A, Mühlenbruch G, Schmidt T, Günther RW, Wildberger JE (2005) Radiation dose reduction to the male gonads during mDCT: the effectiveness of a lead shield. Am J Roentgenol 184:128–130

    Google Scholar 

  7. Wildberger JE, Mahnken AH, Schmitz-Rode T, Flohr T, Stargardt A, Haage P, Schaller S, Günther RW (2001) Individually adapted examination protocols for reduction of radiation exposure in chest CT. Invest Radiol 36:604–611

    Article  PubMed  CAS  Google Scholar 

  8. Jung B, Mahnken AH, Stargardt A, Simon J, Flohr TG, Schaller S, Koos R, Gunther RW, Wildberger JE (2003) Individually weight-adapted examination protocol in retrospectively ECG-gated MSCT of the heart. Eur Radiol 13:2560–2566

    Article  PubMed  CAS  Google Scholar 

  9. Mahnken AH, Wildberger JE, Simon J, Koos R, Flohr TG, Schaller S, Gunther RW (2003) Detection of coronary calcifications: feasibility of dose reduction with a body weight-adapted examination protocol. Am J Roentgenol 181:533–538

    CAS  Google Scholar 

  10. Kalender WA, Wolf H, Süß C, Gies M, Greess H, Bautz WA (1999) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328

    Article  PubMed  CAS  Google Scholar 

  11. Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 217:430–435

    PubMed  CAS  Google Scholar 

  12. Wintersperger B, Jakobs T, Herzog P, Schaller S, Nikolauo K, Suess C, Weber C, Reiser M, Becker C (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341

    Article  PubMed  CAS  Google Scholar 

  13. Jakobs T, Wintersperger B, Herzog P, Flohr T, Suess C, Knez A, Reiser M, Becker C (2003) Ultra-low-dose coronary artery calcium screening using multislice CT with retrospective ECG gating. Eur Radiol 13:1923–1930

    Article  PubMed  Google Scholar 

  14. Application Guide, Somatom Sensation Cardiac (2004) Software Version B10

  15. Zankl M, Panzer W, Drexler G (1991) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part IV: Organ doses from computed tomographic examinations. GSF-Bericht 30/91. GSF-Forschungszentrum für Umwelt und Gesundheit, Oberschleißheim

  16. Cohnen M, Poll L, Püttmann C, Ewen K, Mödder U (2001) Radiation exposure in multi-slice CT of the heart. Fortschr Rontgenstr 173:295–299

    Article  CAS  Google Scholar 

  17. Greess H, Wolf H, Suess C, Kalender WA, Bautz W, Baum U (2004) Automatic exposure control to reduce the dose in subsecond multislice spiral CT: phantom measurements and clinical results. Fortschr Rontgenstr 176:862–869

    Article  CAS  Google Scholar 

  18. Becker C, Schatzl M, Feist H, Bauml A, Schopf UJ, Michalski G, Lechel U, Hengge M, Bruning R, Reiser M (1999) Assessment of the effective dose for routine protocols in conventional CT, electron beam CT and coronary angiography. Fortschr Rontgenstr 170:99–104

    CAS  Google Scholar 

  19. Cohnen M, Poll LW, Puettmann C, Ewen K, Saleh A, Mödder U (2003) Effective doses in standard protocols for multi-slice CT scanning. Eur Radiol 13:1148–1153

    PubMed  Google Scholar 

  20. Price R, Halson P, Sampson M (1999) Dose reduction during CT scanning in an anthropomorphic phantom by the use of a male gonad shield. Br J Radiol 72:489–494

    PubMed  CAS  Google Scholar 

  21. Groves AM, Owen KE, Courtney HM, Yates SJ, Goldstone KE, Blake GM, Dixon AK (2004) 16-detector multislice CT: dosimetry estimation by TLD measurement compared with Monte Carlo simulation. Br J Radiol 77:662–665

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohl, C., Mühlenbruch, G., Wildberger, J.E. et al. Estimation of radiation exposure in low-dose multislice computed tomography of the heart and comparison with a calculation program. Eur Radiol 16, 1841–1846 (2006). https://doi.org/10.1007/s00330-005-0124-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-0124-y

Keywords

Navigation