Skip to main content
Log in

Morphological, contrast-enhanced and spin labeling perfusion imaging for monitoring of relapse after RF ablation of renal cell carcinomas

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

MR perfusion imaging was applied for the assessment of completeness in the destruction of renal cell carcinomas by RF ablation (RFA) in a pilot study. An arterial spin labeling (ASL) approach was compared to conventional contrast-enhanced T1-weighted (CE-T1w) imaging. Ten patients suffering from renal cell carcinoma were treated by RFA. For the assessment of the extent of coagulation and for the detection of residual tumor, T1-weighted gradient-echo imaging, T2-weighted spin echo imaging and two different perfusion imaging techniques were performed before, 1 day and 6 weeks after RFA at 1.5 T. Perfusion imaging comprised CE-T1 weighted and FAIR-TrueFISP ASL imaging. Perfusion images recorded in the acute stage after RFA showed higher compliance to the definitive ablation volume reached after 6 weeks than T2-weighted images, which underestimated the true necrosis size. In the detection of residual tumor tissue, both modalities complimented each other. The exclusion of residual tumor tissue could more reliably be performed using perfusion-imaging methods. Both perfusion-imaging modalities showed sufficient imaging quality for post-interventional monitoring. Perfusion imaging provides a higher predictability of the completeness of tumor ablation and extent of coagulation than T2-weighted imaging alone. Since the results of the FAIR-TrueFISP sequence are promising, the administration of potentially nephrotoxic contrast media may be avoided in the respective patient cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gervais DA, Arellano RS, Mueller PR (2005) Percutaneous radiofrequency ablation of renal cell carcinoma. Eur Radiol 15:960–967

    Article  PubMed  Google Scholar 

  2. Farrell MA, Charboneau WJ, DiMarco DS, Chow GK, Zincke H, Callstrom MR, Lewis BD, Lee RA, Reading CC (2003) Imaging-guided radiofrequency ablation of solid renal tumors. Am J Roentgenol 180:1509–1513

    CAS  Google Scholar 

  3. Mayo-Smith WW, Dupuy DE, Parikh PM, Pezzullo JA, Cronan JJ (2003) Imaging-guided percutaneous radiofrequency ablation of solid renal masses: techniques and outcomes of 38 treatment sessions in 32 consecutive patients. AJR Am J Roentgenol 180:1503–1508

    PubMed  Google Scholar 

  4. Mahnken AH, Gunther RW, Tacke J (2004) Radiofrequency ablation of renal tumors. Eur Radiol 14:1449–1455

    Article  PubMed  Google Scholar 

  5. Solbiati L, Tonolini M, Cova L (2004) Monitoring RF ablation. Eur Radiol 14(Suppl 8):P34–P42

    Article  PubMed  Google Scholar 

  6. Veit P, Antoch G, Stergar H, Bockisch A, Forsting M, Kuehl H Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol 16:80–87 [Epub ahead of print]

  7. Mahnken AH, Buecker A, Spuentrup E, Krombach GA, Henzler D, Gunther RW, Tacke J (2004) MR-guided radiofrequency ablation of hepatic malignancies at 1.5 T: initial results. J Magn Reson Imaging 19:342–348

    Article  PubMed  Google Scholar 

  8. Vogl TJ, Muller PK, Hammerstingl R et al (1995) Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results. Radiology 196:257–265

    PubMed  CAS  Google Scholar 

  9. Kahn T, Bettag M, Ulrich F et al (1994) MRI-guided laser-induced interstitial thermotherapy of cerebral neoplasms. J Comput Assist Tomogr 18:519–532

    Article  PubMed  CAS  Google Scholar 

  10. Huppert PE, Trubenbach J, Schick F, Pereira P, Konig C, Claussen CD (2000) [MRI-guided percutaneous radiofrequency ablation of hepatic neoplasms-first technical and clinical experiences]. Rofo 172:692–700

    PubMed  CAS  Google Scholar 

  11. Lewin JS, Connell CF, Duerk JL et al (1998) Interactive MRI-guided radiofrequency interstitial thermal ablation of abdominal tumors: clinical trial for evaluation of safety and feasibility. J Magn Reson Imaging 8:40–47

    Article  PubMed  CAS  Google Scholar 

  12. Lewin JS, Nour SG, Connell CF, Sulman A, Duerk JL, Resnick MI, Haaga JR (2004) Phase II clinical trial of interactive MR imaging-guided interstitial radiofrequency thermal ablation of primary kidney tumors: initial experience. Radiology 232:835–845

    Article  PubMed  Google Scholar 

  13. Chung YC, Merkle EM, Lewin JS, Shonk JR, Duerk JL (1999) Fast T(2)-weighted imaging by PSIF at 0.2 T for interventional MRI. Magn Reson Med 42:335–344

    Article  PubMed  CAS  Google Scholar 

  14. Breen MS, Lazebnik RS, Fitzmaurice M, Nour SG, Lewin JS, Wilson DL (2004) Radiofrequency thermal ablation: correlation of hyperacute MR lesion images with tissue response. J Magn Reson Imaging 20:475–486

    Article  PubMed  Google Scholar 

  15. Lee JD, Lee JM, Kim SW, Kim CS, Mun WS (2001) MR imaging-histopathologic correlation of radiofrequency thermal ablation lesion in a rabbit liver model: observation during acute and chronic stages. Korean J Radiol 2:151–158

    Article  PubMed  CAS  Google Scholar 

  16. Thomsen HS (2004) Gadolinium-based contrast media may be nephrotoxic even at approved doses. Eur Radiol 14:1654–1656

    PubMed  Google Scholar 

  17. Nyman U, Elmstahl B, Leander P, Nilsson M, Golman K, Almen T (2002) Are gadolinium-based contrast media really safer than iodinated media for digital subtraction angiography in patients with azotemia? Radiology 223:311–318; discussion 328–329

    Article  PubMed  Google Scholar 

  18. Erley CM, Bader BD, Berger ED, Tuncel N, Winkler S, Tepe G, Risler T, Duda S (2004) Gadolinium-based contrast media compared with iodinated media for digital subtraction angiography in azotaemic patients. Nephrol Dial Transplant 19:2526–2531

    Article  PubMed  CAS  Google Scholar 

  19. Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361

    Article  PubMed  Google Scholar 

  20. Pretorius ES, Siegelman ES, Ramchandani P, Cangiano T, Banner MP (1999) Renal neoplasms amenable to partial nephrectomy: MR imaging. Radiology 212:28–34

    PubMed  CAS  Google Scholar 

  21. Lazebnik RS, Weinberg BD, Breen MS, Lewin JS, Wilson DL (2003) Sub-acute changes in lesion conspicuity and geometry following MR-guided radiofrequency ablation. J Magn Reson Imaging 18:353–359

    Article  PubMed  Google Scholar 

  22. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiles-LISS

  23. Parker DL, Smith V, Sheldon P, Crooks LE, Fussel L (1983) Temperature distribution measurements in two-dimensional NMR imaging. Med. Phys 10:321–325

    Article  PubMed  CAS  Google Scholar 

  24. Hall LD, Talagala SL (1985) Mapping of pH and temperature distribution using chemical shift resolved tomography. J Magn Reson 65:501–505

    CAS  Google Scholar 

  25. Ishihara Y, Calderon A, Watanabe H et al (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823

    Article  PubMed  CAS  Google Scholar 

  26. Botnar RM, Steiner P, Dubno B, Erhart P, von Schulthess GK, Debatin JF (2001) Temperature quantification using the proton frequency shift technique: In vitro and in vivo validation in an open 0.5 Tesla interventional MR scanner during RF ablation. J Magn Reson Imaging 13:437–444

    Article  PubMed  CAS  Google Scholar 

  27. Zhang Q, Chung YC, Lewin JS, Duerk JL (1998) A method for simultaneous RF ablation and MRI. J Magn Reson Imaging 8:110–114

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Boss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boss, A., Martirosian, P., Schraml, C. et al. Morphological, contrast-enhanced and spin labeling perfusion imaging for monitoring of relapse after RF ablation of renal cell carcinomas. Eur Radiol 16, 1226–1236 (2006). https://doi.org/10.1007/s00330-005-0098-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-0098-9

Keywords

Navigation