Skip to main content

Arterial Spin Labeled MRI for Quantitative Non-Contrast Perfusion Measurement of the Kidneys

  • Chapter
  • First Online:
Advanced Clinical MRI of the Kidney

Abstract

One of the major functions of the kidneys is to filter blood and control fluid balance by maintaining homeostasis. To maintain this functionality, approximately 25% of cardiac output goes to the kidneys at rest. Reduction in blood flow to the kidneys and the associated hypoxia may lead to the initiation and progression of acute kidney injury (AKI) and chronic kidney disease (CKD). The measurement of renal blood flow provides a means to understand the physiological regulation of renal perfusion and the role of its dysregulation in kidney disease and injury. Arterial spin labeled (ASL) magnetic resonance imaging (MRI) has emerged as a quantitative noninvasive method to measure renal perfusion. ASL-MRI is the only perfusion imaging modality that can be performed without the administration of exogenous contrast agent and has the ability to measure renal perfusion in physiological units of mL/100 g/min.

Over the past two decades, ASL-MRI has gone through several technical innovations and has become a mainstream method to measure renal perfusion. Renal ASL has been applied in a variety of kidney diseases including CKD, AKI, diabetes, hypertension, lupus nephritis, and renovascular disease. ASL has also been used to assess renal transplant function, to differentiate tumor types in primary renal cancer, and to assess therapy response in metastatic renal cancer. In this chapter, we will review the principles of ASL-MRI, followed by the acquisition protocol, post-processing and data analysis methods, and finally some clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKI:

Acute kidney injury

ASL:

Arterial spin labeling

BGS:

Background suppression

bSSFP:

Balanced steady state free precession

CASL:

Continuous arterial spin labeling

CKD:

Chronic kidney disease

DCE:

Dynamic contrast-enhanced

DSC:

Dynamic susceptibility contrast

FAIR:

Flow alternating inversion recovery

FOCI:

Frequency offset corrected inversion

FSE:

Fast spin echo

GraSE:

Gradient and spin echo

GRE:

Gradient echo

MRI:

Magnetic resonance imaging

NSF:

Nephrogenic systemic fibrosis

PASL:

Pulsed arterial spin labeling

pCASL:

Pseudo continuous arterial spin labeling

PET:

Positron emission tomography

PLD:

Post-label delay

RCC:

Renal cell carcinoma

SE-EPI:

Spin-echo echo-planar imaging

SNR:

Signal to noise ratio

SPECT:

Single photon emission computed tomography

SShTSE:

Single-shot turbo spin echo

TSE:

Turbo spin echo

References

  1. Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795–803.

    Article  PubMed  Google Scholar 

  2. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  4. Breidthardt T, Cox EF, Squire I, Odudu A, Omar NF, Eldehni MT, et al. The pathophysiology of the chronic cardiorenal syndrome: a magnetic resonance imaging study. Eur Radiol. 2015;25(6):1684–91.

    Article  PubMed  Google Scholar 

  5. Lanzman RS, Robson PM, Sun MR, Patel AD, Mentore K, Wagner AA, et al. Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology. 2012;265(3):799–808.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wong CY, Thie J, Gaskill M, Ponto R, Hill J, Tian HY, et al. A statistical investigation of normal regional intra-subject heterogeneity of brain metabolism and perfusion by F-18 FDG and O-15 H2O PET imaging. BMC Nucl Med. 2006;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berman DS, Kiat H, Maddahi J. The new 99mTc myocardial perfusion imaging agents: 99mTc-sestamibi and 99mTc-teboroxime. Circulation. 1991;84(3 Suppl):I7–21.

    CAS  PubMed  Google Scholar 

  8. Kambadakone AR, Sahani DV. Body perfusion CT: technique, clinical applications, and advances. Radiol Clin N Am. 2009;47(1):161–78.

    Article  PubMed  Google Scholar 

  9. Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO. MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Investig Radiol. 2008;43(1):40–8.

    Article  Google Scholar 

  10. Roberts DA, Detre JA, Bolinger L, Insko EK, Lenkinski RE, Pentecost MJ, et al. Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology. 1995;196(1):281–6.

    Article  CAS  PubMed  Google Scholar 

  11. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992;23(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  12. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A. 1992;89(1):212–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16.

    Article  PubMed  Google Scholar 

  14. Ye FQ, Berman KF, Ellmore T, Esposito G, van Horn JD, Yang Y, et al. H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med. 2000;44(3):450–6.

    Article  CAS  PubMed  Google Scholar 

  15. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;150025:772.

    Article  Google Scholar 

  16. Saleh L, Juneman E, Movahed MR. The use of gadolinium in patients with contrast allergy or renal failure requiring coronary angiography, coronary intervention, or vascular procedure. Catheter Cardiovasc Interv. 2011;78(5):747–54.

    Article  PubMed  Google Scholar 

  17. Wolf RL, Wang J, Wang S, Melhem ER, O'Rourke DM, Judy KD, et al. Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 tesla. J Magn Reson imaging: JMRI. 2005;22(4):475–82.

    Article  PubMed  Google Scholar 

  18. Madhuranthakam AJ, Yuan Q, Pedrosa I. Quantitative methods in abdominal MRI: perfusion imaging. Top Magn Reson Imaging. 2017;26(6):251–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim SG, Tsekos NV. Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Magn Reson Med. 1997;37(3):425–35.

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Greer JS, Dimitrov IE, Pezeshk P, Chhabra A, Madhuranthakam AJ. Frequency offset corrected inversion pulse for B0 and B1 insensitive fat suppression at 3T: application to MR Neurography of brachial plexus. J Magn Reson Imaging. 2018;48(4):1104–11.

    Article  PubMed  Google Scholar 

  21. Wang J, Zhang Y, Wolf RL, Roc AC, Alsop DC, Detre JA. Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study. Radiology. 2005;235(1):218–28.

    Article  PubMed  Google Scholar 

  22. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 2008;60(6):1488–97.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gardener AG, Francis ST. Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Med. 2010;63(6):1627–36.

    Article  PubMed  Google Scholar 

  24. Robson PM, Madhuranthakam AJ, Dai W, Pedrosa I, Rofsky NM, Alsop DC. Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling. Magn Reson Med. 2009;61(6):1374–87.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buchanan CE, Cox EF, Francis ST. Evaluation of 2D imaging schemes for pulsed arterial spin labeling of the human kidney cortex. Diagnostics (Basel). 2018;8(3)

    Google Scholar 

  26. Martirosian P, Klose U, Mader I, Schick F. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med. 2004;51(2):353–61.

    Article  PubMed  Google Scholar 

  27. Greer JS, Wang X, Wang Y, Pinho MC, Maldjian JA, Pedrosa I, et al. Robust pCASL perfusion imaging using a 3D Cartesian acquisition with spiral profile reordering (CASPR). Magn Reson Med. 2019;82(5):1713–24.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Robson PM, Madhuranthakam AJ, Smith MP, Sun MR, Dai W, Rofsky NM, et al. Volumetric arterial spin-labeled perfusion imaging of the kidneys with a three-dimensional fast spin Echo Acquisition. Acad Radiol. 2016;23(2):144–54.

    Article  PubMed  Google Scholar 

  29. Nery F, De Vita E, Clark CA, Gordon I, Thomas DL. Robust kidney perfusion mapping in pediatric chronic kidney disease using single-shot 3D-GRASE ASL with optimized retrospective motion correction. Magn Reson Med. 2019;81(5):2972–84.

    Article  PubMed  Google Scholar 

  30. Nery F, Buchanan CE, Harteveld AA, Odudu A, Bane O, Cox EF, et al. Consensus-based technical recommendations for clinical translation of renal ASL MRI. MAGMA. 2020;33(1):141–61.

    Article  PubMed  Google Scholar 

  31. Zhang X, Petersen ET, Ghariq E, De Vis JB, Webb AG, Teeuwisse WM, et al. In vivo blood T(1) measurements at 1.5 T, 3 T, and 7 T. Magn Reson Med. 2013;70(4):1082–6.

    Article  CAS  PubMed  Google Scholar 

  32. Dixon WT, Sardashti M, Castillo M, Stomp GP. Multiple inversion recovery reduces static tissue signal in angiograms. Magn Reson Med. 1991;18(2):257–68.

    Article  CAS  PubMed  Google Scholar 

  33. Taso M, Guidon A, Alsop DC. Influence of background suppression and retrospective realignment on free-breathing renal perfusion measurement using pseudo-continuous ASL. Magn Reson Med. 2019;81(4):2439–49.

    Article  PubMed  Google Scholar 

  34. Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med. 1999;41(6):1246–54.

    Article  CAS  PubMed  Google Scholar 

  35. Song R, Loeffler RB, Hillenbrand CM. Improved renal perfusion measurement with a dual navigator-gated Q2TIPS fair technique. Magn Reson Med. 2010;64(5):1352–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shirvani S, Tokarczuk P, Statton B, Quinlan M, Berry A, Tomlinson J, et al. Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge. Eur Radiol. 2019;29(1):232–40.

    Article  PubMed  Google Scholar 

  37. Wang J, Zhang Y, Yang X, Wang X, Zhang J, Fang J, et al. Hemodynamic effects of furosemide on renal perfusion as evaluated by ASL-MRI. Acad Radiol. 2012;19(10):1194–200.

    Article  PubMed  Google Scholar 

  38. Zhao L, Vidorreta M, Soman S, Detre JA, Alsop DC. Improving the robustness of pseudo-continuous arterial spin labeling to off-resonance and pulsatile flow velocity. Magn Reson Med. 2017;78(4):1342–51.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou L, Wang Y, Madhuranthakam AJ, editors. Improving the robustness of pseudo-continuous arterial spin labeling for renal perfusion imaging. Proceedings of the 29th Annual Meeting of ISMRM; 2021; Virtual.

    Google Scholar 

  40. Taso M, Zhao L, Guidon A, Litwiller DV, Alsop DC. Volumetric abdominal perfusion measurement using a pseudo-randomly sampled 3D fast-spin-echo (FSE) arterial spin labeling (ASL) sequence and compressed sensing reconstruction. Magn Reson Med. 2019;82(2):680–92.

    Article  PubMed  Google Scholar 

  41. Garcia DM, Duhamel G, Alsop DC. Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med. 2005;54(2):366–72.

    Article  PubMed  Google Scholar 

  42. Maleki N, Dai W, Alsop DC. Optimization of background suppression for arterial spin labeling perfusion imaging. MAGMA. 2012;25(2):127–33.

    Article  PubMed  Google Scholar 

  43. Cox EF, Buchanan CE, Bradley CR, Prestwich B, Mahmoud H, Taal M, et al. Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease. Front Physiol. 2017;8:696.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Song R, Tipirneni A, Johnson P, Loeffler RB, Hillenbrand CM. Evaluation of respiratory liver and kidney movements for MRI navigator gating. J Magn Reson Imaging. 2011;33(1):143–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Philbrick KA, Weston AD, Akkus Z, Kline TL, Korfiatis P, Sakinis T, et al. RIL-contour: a medical imaging dataset annotation tool for and with deep learning. J Digit Imaging. 2019;32(4):571–81.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Noda Y, Ito K, Kanki A, Tamada T, Yamamoto A, Kazuya Y, et al. Measurement of renal cortical thickness using noncontrast-enhanced steady-state free precession MRI with spatially selective inversion recovery pulse: association with renal function. J Magn Reson Imaging. 2015;41(6):1615–21.

    Article  PubMed  Google Scholar 

  47. Wu W-C, Su M-Y, Chang C-C, Tseng W-YI, Liu K-L. Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology. 2011;261(3):845–53.

    Article  PubMed  Google Scholar 

  48. Evans RG, Ince C, Joles JA, Smith DW, May CN, O'Connor PM, et al. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology. Clin Exp Pharmacol Physiol. 2013;40(2):106–22.

    Article  CAS  PubMed  Google Scholar 

  49. Ow CPC, Ngo JP, Ullah MM, Hilliard LM, Evans RG. Renal hypoxia in kidney disease: cause or consequence? Acta Physiol (Oxf). 2018;222(4):e12999.

    Article  CAS  PubMed  Google Scholar 

  50. Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, et al. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant. 2018;33(suppl_2):ii15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mora-Gutierrez JM, Garcia-Fernandez N, Slon Roblero MF, Paramo JA, Escalada FJ, Wang DJ, et al. Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging. 2017;46(6):1810–7.

    Article  PubMed  Google Scholar 

  52. Ren T, Wen CL, Chen LH, Xie SS, Cheng Y, Fu YX, et al. Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. Magn Reson Imaging. 2016;34(7):908–14.

    Article  PubMed  Google Scholar 

  53. Cutajar M, Hilton R, Olsburgh J, Marks SD, Thomas DL, Banks T, et al. Renal blood flow using arterial spin labelling MRI and calculated filtration fraction in healthy adult kidney donors pre-nephrectomy and post-nephrectomy. Eur Radiol. 2015;25(8):2390–6.

    Article  PubMed  Google Scholar 

  54. Zhang Y, Kapur P, Yuan Q, Xi Y, Carvo I, Signoretti S, et al. Tumor vascularity in renal masses: correlation of arterial spin-labeled and dynamic contrast-enhanced magnetic resonance imaging assessments. Clin Genitourin Cancer. 2016;14(1):e25–36.

    Article  PubMed  Google Scholar 

  55. Tsai LL, Bhatt RS, Strob MF, Jegede OA, Sun MRM, Alsop DC, et al. Arterial spin labeled perfusion MRI for the evaluation of response to tyrosine kinase inhibition therapy in metastatic renal cell carcinoma. Radiology. 2021;298(2):332–40.

    Article  PubMed  Google Scholar 

  56. Zhou L, Wang Y, Pinho MC, Pan E, Xi Y, Maldjian JA, et al. Intrasession reliability of arterial spin-labeled MRI-measured noncontrast perfusion in glioblastoma at 3 T. Tomography. 2020;6(2):139–47.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Zhou L, Udayakumar D, Madhuranthakam AJ, editors. Reproducibility and repeatability of quantitative pCASL measurements in a 3D-printed perfusion phantom. Proceedings of the 29th Annual Meeting of ISMRM; 2021; Virtual.

    Google Scholar 

  58. Oliver-Taylor A, Hampshire T, Mutsaerts HJMM, Clement P, Warnert E, Harteveld AA, et al., Editors. A multi-site round-robin assessment of ASL using a perfusion phantom. Proceedings of the 27th annual meeting of ISMRM; 2019; Montreal, Canada.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananth J. Madhuranthakam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhuranthakam, A.J., Fernandez-Seara, M.A. (2023). Arterial Spin Labeled MRI for Quantitative Non-Contrast Perfusion Measurement of the Kidneys. In: Serai, S.D., Darge, K. (eds) Advanced Clinical MRI of the Kidney. Springer, Cham. https://doi.org/10.1007/978-3-031-40169-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40169-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40168-8

  • Online ISBN: 978-3-031-40169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics