Skip to main content
Log in

Diagnosis of acute fractures of the extremities: comparison of low-field MRI and conventional radiography

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of this study was to compare low-field MRI (0.2 T) and conventional radiography for the detection of acute fractures of the distal part of the extremities. X-ray and MRI examinations of 78 (41 fractures, 37 without fracture) patients with the clinical suspicion of an acute fracture in the distal part of the extremities were compared. Four experienced radiologists, two for each of the two modalities, independently analyzed the images. Interobserver variability and receiver operating characteristic (ROC) analysis for both methods were established. The MRI and conventional radiography revealed an accuracy of 81.4 and of 79.5%, respectively, in the detection of acute fractures. The diagnostic accuracy of MRI to detect fractures in the hand and forefoot proved to be significantly inferior to conventional X-ray examinations. On the other hand, MRI achieved a better accuracy for the examination of bones near a large joint. The interobserver variability for both methods was rated as moderate. In ROC analysis both methods were rated as good. There was no statistical difference of the accuracy between low-field MRI and conventional radiography in the detection of acute fractures of the distal part of the extremities. Consequently, a routine use of low-field MRI as an alternative to conventional radiography to diagnose acute fractures of the extremities seems not to be justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a–d

Similar content being viewed by others

References

  1. Masciocchi C, Barile A, Satragno L (2000) Musculoskeletal MRI: dedicated systems. Eur Radiol 10:250–255

    Article  CAS  PubMed  Google Scholar 

  2. Peterfy CG, Roberts T, Genant HK (1998) Dedicated extremity MR imaging: an emerging technology. Magn Reson Imaging Clin N Am 6:849–870

    PubMed  Google Scholar 

  3. Bohndorf K (1999) Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures). Skeletal Radiol 28:545–560

    Google Scholar 

  4. Bertlau T, Christensen OM, Edstrom P, Thomsen HS, Lausten GS (1999) Diagnosis of scaphoid fracture and dedicated extremity MRI. Acta Orthop Scand 70:504–508

    PubMed  Google Scholar 

  5. Kesting-Sommerhoff B, Gerhardt P, Golder W, Hof H, Riel KA, Helmberger H, Lenz M, Lehner K (1995) MRT des kniegelenks: erste ergebnisse eines vergleichs von 0.2 T spezialsystem mit 1.5 T hochfeldmagnet. RöFo 162:390–395

    Google Scholar 

  6. Klein MA (1993) Reformatted three dimensional fourier transformed gradient-recalled-echo MR imaging of the ankle: spectrum of normal and abnormal findings. Am J Roentgenol 161:831–836

    CAS  Google Scholar 

  7. Schick S, Tratting S, Gabler C, Kukla C, Gahleitner A, Kainberger F, Ba-Ssalamah A, Breitenseher M (1999) Okkulte handgelenksfrakturen: feinfokusvergrösserungsröntgen vs MRT. Röfo 170:16–21

    Google Scholar 

  8. Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8:283–298

    CAS  PubMed  Google Scholar 

  9. Hanley JA, McNeil BJ (1982) The meaning and use of the area under receiver operating characteristic curve. Radiology 143:29–36

    CAS  PubMed  Google Scholar 

  10. Hanley JA, McNeil BJ (1983) The method of comparing the area under the receiver operating characteristic curves derived from the same case. Radiology 148:839–843

    CAS  PubMed  Google Scholar 

  11. Brennan P, Silman A (1992) Statistical methods for assessing observer variability in clinical measures. Br Med J 304:1491–1494

    CAS  Google Scholar 

  12. Haramati N, Staron RB, Barax C, Feldman F (1994) Magnetic resonance imaging of occult fractures of the proximal femur. Skeletal Radiol 23:19–22

    CAS  PubMed  Google Scholar 

  13. Kersting-Sommerhoff B, Hof N, Lenz M, Gerhardt P (1996) MRI of the peripheral joints with a low-field dedicated system: a reliable and cost-effective alternative to high-field units? Eur Radiol 6:561–565

    CAS  PubMed  Google Scholar 

  14. Riel KA, Martinek V, Öttl G, Reinisch M, Lehner K, Gerhard P, Hipp E (1993) Kernspintomographie (MRT). Befunde bei Sportverletzungen am oberen Sprunggelenk. Sportorthop Sporttraumatol 12:126–130

    Google Scholar 

  15. Munk PL, Lee MJ, Logan PM, Connell DG, Janzen DL, Poon PY (1997) Scaphoid bone waist fractures, acute and chronic: imaging with different techniques. Am J Roentgenol 168:779–786

    CAS  Google Scholar 

  16. Bonel H, Frick A, Sittek H, Heuck A, Steinborn M, Baumeister RG, Reiser M (1997) Untersuchung von hand und handgelenken mit einem dedizierten Niederfeldextremitäten-MRT-Gerät. Radiologe 37:785–793

    Article  CAS  PubMed  Google Scholar 

  17. Fowler C, Sullivan B, Williams LA, McCathy G, Savage R, Palmer A (1998) A comparison of bone scintigraphy and MRI in the early diagnosis of occult scaphoid fracture. Skeletal Radiol 27:683–687

    Article  CAS  PubMed  Google Scholar 

  18. Gaebler C, Kukla C, Breitenseher M, Trattning S, Mittlboeck M, Vecsei V (1996) Magnetic resonance imaging of occult scaphoid fractures. J Trauma 41:73–76

    CAS  PubMed  Google Scholar 

  19. Hunter JC, Escobedo EM, Wilson AJ, Hanel DP, Zink-Brody GC, Mann FA (1997) MR imaging of clinically suspected scaphoid fractures. Am J Roentgenol 168:1287–1293

    CAS  Google Scholar 

  20. Lepistö J, Mattila K, Nieminen S, Sattler B, Kormano M (1995) Low-field MRI and scaphoid fracture. J Hand Surg 20:539–542

    Google Scholar 

  21. Bohndorf K, Kilcoyne RF (2002) Traumatic injuries: imaging of peripheral musculoskeletal injuries. Eur Radiol 12:1605–1616

    Article  CAS  PubMed  Google Scholar 

  22. Breitenseher MJ, Metz MV, Gilula LA, Gaebler C (1997) Radiographically occult scaphoid fractures: value of MR imaging in detection. Radiology 203:245–250

    PubMed  Google Scholar 

  23. Hilfiker P, Zanetti M, Debatin JF, McKinnon G, Hodler J (1995) Fast spin-echo inversion-recovery imaging vs fast T2-weighted spin-echo imaging in bone marrow abnormalities. Invest Radiol 30:110–114

    CAS  PubMed  Google Scholar 

  24. Hottya GA, Häckl FO, Iwasko NG, Weber E, White D, Steinbach LS, Peterfy CG, Genant HK (2000) Assessing radiographically occult upper extremity fractures with dedicated extremity MRI. Emerg Radiol 7:339–348

    Google Scholar 

  25. Van Gelderen WF, al-Hindawi M, Gale RS, Steward AH, Archibald CG (1997) Significance of short tau inversion recovery magnetic resonance sequence in the management of skeletal injuries. Australas Radiol 41:13–15

    PubMed  Google Scholar 

  26. Bertlau T, Tuxoe J, Larsen L (2002) Bone bruise in the acutely injured knee. Knee Surg Sports Traumatol Arthrosc 10:96–100

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Remplik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remplik, P., Stäbler, A., Merl, T. et al. Diagnosis of acute fractures of the extremities: comparison of low-field MRI and conventional radiography. Eur Radiol 14, 625–630 (2004). https://doi.org/10.1007/s00330-003-2066-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-003-2066-6

Keywords

Navigation