Skip to main content

Advertisement

Log in

Bacterial communities and greenhouse gas emissions of shallow ponds in the High Arctic

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Permafrost thawing in lowland Arctic tundra results in a polygonal patterned landscape and the formation of numerous small ponds. These ponds emit biologically mediated carbon dioxide (CO2) and methane (CH4). Their greenhouse gas (GHG) emissions are variable, for reasons that are not well understood. Emissions are related to a balance between GHG producers and consumers, as well as to physical properties of the water column controlling gas exchange rates with the atmosphere. Here, we investigated the bacterial diversity of polygonal and runnel ponds, two geomorphologically distinct pond types commonly found in continuous permafrost regions. Using a combination of 16S rRNA Sanger sequencing and high-throughput amplicon sequencing, we found that bacterial communities in overlying waters were clearly dominated by carbon degraders and were similar in both pond types, despite their variable physical and chemical properties. However, surface sediment communities in the two pond types were significantly different. Polygonal pond sediment was colonized by carbon degraders (46–29 %), cyanobacteria (20–27 %) that take up CO2 and produce oxygen, and methanotrophs (11–20 %) that consume CH4 and require oxygen. In contrast, cyanobacteria were effectively absent from the surface sediment of runnel ponds, which in addition to carbon degraders (65–81 %), were colonized by purple non-sulfur bacteria (5–21 %), and by fewer methanotrophs (1–5 %). The link between the methanotrophic community and the type of ponds could potentially be used to improve upscale estimates of GHG emissions based on landscape morphology in such remote regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abnizova A, Siemens J, Langer M, Boike J (2012) Small ponds with major impact: the relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions. Glob Biogeochem Cycles 26:GB2041

  • Anisimova M, Gascuel O (2006) Approximate likelihood ratio test for branches: a fast, accurate and powerful alternative. Syst Biol 55:539–552

    Article  PubMed  Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic Press, Inc., London

    Google Scholar 

  • Barbier BA, Dziduch I, Liebner S, Ganzert L, Lantuit H, Pollard W, Wagner D (2012) Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol Ecol 82:1574–6941

    Article  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  PubMed  CAS  Google Scholar 

  • Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42

    Article  CAS  Google Scholar 

  • Bastviken D, Cole J, Pace ML, Tranvik LJ (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 8:4009–4021

    Google Scholar 

  • Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130

    Article  CAS  Google Scholar 

  • Bousquet P, Ciais P, Miller J, Dlugokencky EJ, Hauglustaine DA et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    Article  PubMed  CAS  Google Scholar 

  • Burkert U, Warnecke F, Babenzien D, Zwirnmann E, Pernthaler J (2003) Members of a readily enriched β-proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 69:6550–6559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Castresana J (2000) Selection for conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  • Christensen TR, Johansson T, Olsrud M et al (2007) A catchment-scale carbon and greenhouse gas budget of a subarctic landscape. Philos Trans R Soc A Math Phys Eng Sci 365:1643–1656

    Article  CAS  Google Scholar 

  • Cole J, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37:D141–D145

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Comeau AM, William KW, Tremblay JE, Carmack EC, Lovejoy C (2011) Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One 6:e27492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Comeau AM, Harding T, Galand PE, Vincent WF, Lovejoy C (2012) Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters. Sci Rep 2:604

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar R (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ellis CJ, Rochefort L, Gauthier G, Pienitz R (2008) Paleoecological evidence for transitions between contrasting landforms in a polygon-patterned high Arctic wetland. Arc Antarct Alp Res 40:624–637

    Article  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Fortier D, Allard M (2004) Late Holocene syngenetic ice-wedge polygons development, Bylot Island, Canadian Arctic Archipelago. Can J Earth Sci 41:997–1012

    Article  Google Scholar 

  • French HM (2007) The periglacial environment, 3rd edn. John Wiley & Sons Ltd, England, p 458

    Book  Google Scholar 

  • Fung I, John J, Lemer J, Matthews E, Prather M, Steele LP, Fraser PJ (1991) Three-dimensional model synthesis of the global methane cycle. J Geophys Res 96:13033–13065

    Article  CAS  Google Scholar 

  • Galand PE, Lovejoy C, Pouliot J, Garneau M, Vincent WF (2008) Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a Stamukhi lake and its source waters. Limnol Oceanogr 53:813–823

    Article  Google Scholar 

  • Gao X, Schlosser CA, Sokolov A, Anthony KW, Zhuang Q, Kicklighter D (2013) Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback. Environ Res Lett 8:035014

    Article  Google Scholar 

  • Garcia-Contreras R, Celis H, Romero I (2004) Importance of Rhodospirillum rubrum H+-pyrophosphatase under low-energy conditions. J Bacteriol 186:6651–6655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gauthier G, Rocheford L, Reed A (1996) The exploitation of wetland ecosystems by herbivores on Bylot Island. Geosci Can 23:253–259

    Google Scholar 

  • Green JL, Bohannan BJM, Whitikar RJ (2008) Microbial biogeography: from taxonomy to traits. Science 23:1039–1043

    Article  Google Scholar 

  • Grosse G, Jones B, Arp C (2013) Thermokarst lakes, drainage, and drained basins. In: Shroder JF, Giardino R, Harbor J (eds) Treatise on geomorphology, vol 8., Glacial and periglacial geomorphologyAcademic Press, San Diego, pp 325–353

    Chapter  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    PubMed  CAS  PubMed Central  Google Scholar 

  • He R, Wooller MJ, Pohlmane JW, Quensenf J, Tiedjef JM, Leigh MB (2012) Shifts in identity and activity of methanotrophs in Arctic lake sediments in response to temperature changes. Appl Environ Microbiol 78:4715–4723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, sources, and photobleaching of chromophotic dissolved organic matter. Limnol Oceanogr 53:955–969

    Article  Google Scholar 

  • Hou S, Makarova KS, Saw JHW, Senin P et al (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct. doi:10.1186/1745-6150-3-26

    PubMed  PubMed Central  Google Scholar 

  • Jaatinen K, Tuittila ES, Laine J, Yrjälä K, Fritze H (2005) Methane-oxidizing bacteria in a Finnish raised mire complex: effects of site fertility and drainage. Microb Ecol 50:429–439

    Article  PubMed  CAS  Google Scholar 

  • Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A (2006) Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol Oceanogr 51:1195–1204

    Article  CAS  Google Scholar 

  • Kirchman DL (2002) The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    PubMed  CAS  Google Scholar 

  • Koch JC, Gurney K, Wipfli MS (2014) Morphology-dependent water budgets and nutrient fluxes in Arctic thaw ponds. Permafrost Periglac Process 25:79–93

    Article  Google Scholar 

  • Laurion I, Mladenov N (2013) Dissolved organic matter photolysis in Canadian Arctic thaw ponds. Environ Res Lett 8:035026

    Article  Google Scholar 

  • Laurion I, Vincent WF, MacIntyre S, Retamal L, Dupont C, Francus P, Pienitz R (2010) Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 55:115–133

    Article  CAS  Google Scholar 

  • Liu P, Qiu Q, Lu Y (2011) Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil. Appl Environ Microbiol 77:3884–3887

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol 63:50–56

    PubMed  CAS  PubMed Central  Google Scholar 

  • McGuire AD, Melillo JM, Kicklighter DW, Joyce LA (1995) Equilibrium responses of soil carbon to climate change: empirical and process-based estimates. J Biogeogr 22:785–796

    Article  Google Scholar 

  • Mohit V, Archambault P, Toupoint N, Lovejoy C (2014) Phylogenetic differences in summer attached and free-living bacterial communities in a temperate coastal lagoon, revealed via high throughput 16S rRNA gene sequencing. Appl Environ Microbiol 29:16–23

    Google Scholar 

  • Morita M, Malvankar N, Franks AE, Summers ZM et al (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2:e00159–11. http://mbio.asm.org/content/2/4/e00159-11.short

  • Negandhi K, Laurion I, Whiticar MJ, Galand PE, Xu X, Lovejoy C (2013) Small thaw ponds: an unaccounted source of methane in the Canadian high Arctic. PLoS ONE 8:e78204

    Article  PubMed  PubMed Central  Google Scholar 

  • Newton RJ, McMahon KD (2011) Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake. Envirion Microbiol 13:887–899

    Article  CAS  Google Scholar 

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR et al (2009) Environmental, genomic and taxonomic perspectiveson methanotrophic Verrucomicrobia. Envirion Microbiol Rep 1:293–306

    Article  CAS  Google Scholar 

  • Padmanabhan P, Padmanabhan S, deRito C, Gray A et al (2003) Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol 69:1614–1622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pfennig N (1969) Rhodopseudomonas acidophila, sp. n., a new species of the budding purple nonsulfur bacteria. J Bacteriol 99:597–602

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roehm CL, Giesler R, Karlsson J (2009) Bioavailability of terrestrial organic carbon to lake bacteria: the case of a degrading subarctic permafrost mire complex. J Geophys Res Biogeosci 114:G03006

    Google Scholar 

  • Schilder J, Bastviken D, van Hardenbroek M, Kankaala P, Rinta P, Stötter T, Heiri O (2013) Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes. Geophys Res Lett 40:5752–5756

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR et al (2009) Introducing Mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Simon H, Grossart H-P, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • Stainton M, Capel M, Armstrong A (1977) The chemical analysis of freshwater, 2nd edn. Can Fish Mar Serv Misc Spec Publ. p 25

  • Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Environ Res Lett 90:441–451

    Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9:1185–1192

    Article  Google Scholar 

  • van Huissteden J, Berrittella C, Parmentier FJW, Mi Y, Maximov TC, Dolman AJ (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Change 1:119–123

    Article  Google Scholar 

  • van Niel CB (1944) The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8:1–118

    PubMed  PubMed Central  Google Scholar 

  • Vézina S, Vincent W (1997) Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada (73°N, 80°W). Polar Biol 17:523–534

    Article  Google Scholar 

  • Vonk JE, Mann PJ, Dowdy KL, Davydova A et al (2013) Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw. Environ Res Lett 8:035023

    Article  Google Scholar 

  • Walter KM, Zimov A, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75

    Article  PubMed  CAS  Google Scholar 

  • Walter KM, Smith LC, Chapin FS III (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans R Soc A Math Phys Eng Sci 365:165–1676

    Article  Google Scholar 

  • Walter Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony PM, Chapin FS, Finlay JC, Mack MC, Davydov S, Frenzel P, Frolking S (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511:452–456

  • Werner JJ, Koren O, Hugenholtz P et al (2012) Impact of training sets on classification of high-throughput bacterial 16S rRNA gene surveys. ISME J 6:94–103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whiticar M (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  CAS  Google Scholar 

  • Wik M, Crill PM, Bastviken D, Danielsson A, Norbäck E (2011) Bubble trapped in arctic lake ice: potential implications for methane emissions. J Geophys Res 116:G03044

    Google Scholar 

  • Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zimov SA, Voropaev YV, Davydov SP, Zimova GM, Davydova AI, Chapin FS III, Chapin MC (2001) Flux of methane from north Siberian aquatic systems: influence on atmospheric methane. In: Paepe R, Melnikov VP, Overloop E, Gorokhov VD (eds) Permafrost response on economic development, environmental security and natural resources. NATO Science Series, Springer, pp 511–524

    Chapter  Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman & Hall, New York, p 123

  • Zona D, Oechel WC, Peterson KM, Clements RJ, Paw UKT, Ustin SL (2010) Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain. Glob Change Biol 16:1870–1882

    Article  Google Scholar 

Download references

Acknowledgments

We thank P.-G. Rossi, V. Gélinas, C. Girard, L. Boutet, and G. Deslongchamps for their efficient help in the field and laboratory, A. Comeau for his precious help at the molecular laboratory and for pyrosequencing data processing, G. Gauthier, the Centre for Northern Studies, the Polar Continental Shelf Project and Parks Canada for logistic support, and ArcticNet, Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery and other grants to CL and IL, EnviroNorth CREATE training program, and International Polar Year for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Laurion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negandhi, K., Laurion, I. & Lovejoy, C. Bacterial communities and greenhouse gas emissions of shallow ponds in the High Arctic. Polar Biol 37, 1669–1683 (2014). https://doi.org/10.1007/s00300-014-1555-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1555-1

Keywords

Navigation