Skip to main content

Advertisement

Log in

Feeding repellence of Antarctic and sub-Antarctic benthic invertebrates against the omnivorous sea star Odontaster validus

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Antarctic and sub-Antarctic benthic invertebrates are subjected to intense predation by mobile macroinvertebrates. Accordingly, chemical protection as well as other defensive mechanisms are expected to be common in organisms inhabiting these ecosystems. In order to evaluate anti-predation activities and allocation of chemical defenses within the anatomy of marine benthic Antarctic and sub-Antarctic invertebrates, 55 species were tested for feeding repellence against the sea star Odontaster validus, a common eurybathic sympatric predator. The invertebrates tested were collected from the deep waters of two poorly surveyed areas in terms of chemical ecology studies: the eastern Weddell Sea (Antarctica) and the vicinities of Bouvet Island (sub-Antarctica). Experiments were conducted at the Spanish Antarctic Base in Deception Island. In the feeding deterrence experiments, shrimp pieces were treated with crude lipophilic fractions obtained from each species, and were offered to the sea stars. A total of 29 species (53 %) from 7 different phyla (Porifera, Cnidaria, Chordata, Bryozoa, Echinodermata, Mollusca, and Annelida) showed feeding repellence against O. validus, and are therefore chemically protected against this keystone predator. Furthermore, 25 species were dissected into parts to investigate the possible allocation of defensive compounds. Some of the results obtained from these analyses support the prediction that the most exposed/vulnerable tissues concentrate chemical defenses to avoid predation against the sea stars. In summary, the results obtained in our survey support the hypothesis that deep-water Antarctic and sub-Antarctic benthic invertebrates are well protected chemically against sympatric predators, similarly to what has been reported in previous studies investigating shallow-water Antarctic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amsler CD, McClintock JB, Baker BJ (2000a) Chemical defences of Antarctic marine organisms: a reevaluation of the latitudinal hypothesis. In: Davidson W, Howard-Williams C, Broady, P (eds) Antarctic ecosystems: models for wider ecological understanding, Proceedings of the Seventh SCAR International Biology Symposium. N.Z. Natural Sciences, Christchurch, New Zealand, pp 158–164

  • Amsler CD, Moeller CB, McClintock JB, Iken KB, Baker BJ (2000b) Chemical defenses against diatom fouling in Antarctic marine sponges. Biofouling 16:29–45

    Article  CAS  Google Scholar 

  • Amsler CD, McClintock JB, Baker BJ (2001) Secondary metabolites as mediators of trophic interactions among Antarctic marine organisms. Am Zool 41:17–26

    Article  CAS  Google Scholar 

  • Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Ann Rev 32:241–304

    Google Scholar 

  • Arntz W, Thatje S, Linse K, Avila C, Ballesteros M, Barnes D, Cope T, Cristobo FJ, de Broyer C, Gutt J, Isla E, López-González P, Montiel A, Munilla T, Ramos-Esplá AA, Raupach M, Rauschert M, Rodríguez E, Teixidó N (2006) Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island. Polar Biol 29:83–96

    Article  Google Scholar 

  • Avila C (1995) Natural products of opisthobranch molluscs: a biological review. Oceanogr Mar Biol Ann Rev 33:487–559

    Google Scholar 

  • Avila C, Iken K, Fontana A, Gimino G (2000) Chemical ecology of the Antarctic nudibranch Bathydoris hodgsoni Eliot, 1907: defensive role and origin of its natural products. J Exp Biol Ecol 252:27–44

    Article  CAS  Google Scholar 

  • Avila C, Taboada S, Núñez-Pons L (2008) Marine Antarctic chemical ecology: what is next? Mar Ecol 29:1–70

    Article  CAS  Google Scholar 

  • Baker BJ, Yoshida WY (1994) Chemical constituents of four Antarctic sponges in McMurdo Sound, Antarctica. Antarct J US 29:153–155

    Google Scholar 

  • Baker BJ, Kopitzke RW, Hamann M, McClintock JB (1993) Chemical ecology of Antarctic marine invertebrates in McMurdo Sound, Antarctica: chemical aspects. Antarc J US 28(5):132–133

    Google Scholar 

  • Bakus GJ, Green G (1974) Toxicity in sponges and holothurians: a geographic pattern. Science 185:951–953

    Article  PubMed  CAS  Google Scholar 

  • Berne S, Sepčić K, Križaj I, Kem WR, McClintock JB, Turk T (2003) Isolation and characterisation of a cytolytic protein from mucus secretions of the Antarctic heteronemertine Parborlasia corrugatus. Toxicon 41:483–491

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268

    Article  PubMed  CAS  Google Scholar 

  • Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday AJ, Hilbig B, Linse K, Thomson MRA, Tyler PA (2007) The biodiversity of the deep Southern Ocean benthos. Phylos Trans R Soc B 362:39–66

    Article  CAS  Google Scholar 

  • Bryan PJ, McClintock JB, Baker BJ (1998) Population biology and antipredator defenses of the shallow-water Antarctic nudibranch Tritoniella belli. Mar Biol 132:259–265

    Article  Google Scholar 

  • Cimino G, Ghiselin MT (2009) Chemical defense and evolution of opisthobranch gastropods. California Academy of Sciences, San Francisco

    Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine chemical diversity. Oceanogr Mar Biol Ann Rev 41:47–114

    Google Scholar 

  • Davies-Coleman MT (2006) Secondary metabolites from the marine gastropod molluscs of Antarctica, Southern Africa and South America. In: Cimino G, Gavagnin M, Muller WEG (eds) Molluscs. From chemo-ecological study to biotechnological application, Vol. 43. Series: progress in molecular and subcellular biology. Subseries: marine molecular biotechnology. Springer, Berlin/Heidelberg, pp 133–157

  • Dayton PK, Robillia GA, Paine RT, Dayton LB (1974) Biological accommodation in benthic community at McMurdo Sound, Antarctica. Ecol Monog 44:105–128

    Article  Google Scholar 

  • Dearborn JH (1977) Foods and feeding characteristics of Antarctic asteroids and ophiuroids. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington (USA), pp 293–326

    Google Scholar 

  • Faulkner DJ, Ghiselin MT (1983) Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar Ecol Prog Ser 13:295–301

    Article  Google Scholar 

  • Furrow FB, Amsler CD, McClintock JB, Baker BJ (2003) Surface sequestration of chemical feeding deterrents in the Antarctic sponge Latrunculia apicalis as an optimal defense against sea star spongivory. Mar Biol 143:443–449

    Article  Google Scholar 

  • Gutt J (1991) On the distribution and ecology of holothurians in the Weddell Sea (Antarctica). Polar Biol 11:145–155

    Article  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134

    Article  CAS  Google Scholar 

  • Heine JN, McClintock JB, Slattery M, Weston J (1991) Energetic composition, biomass, and chemical defense in the common Antarctic nemertean Parborlasia corrugatus McIntosh. J Exp Mar Biol Ecol 153:15–25

    Article  Google Scholar 

  • Iken K, Baker BJ (2003) Ainigmaptilones, sesquiterpenes from the Antarctic gorgonian coral Ainigmaptilon antarcticus. J Nat Prod 66:888–890

    Article  PubMed  CAS  Google Scholar 

  • Iken K, Avila C, Fontana A, Gavagnin M (2002) Chemical ecology and origin of defensive compounds in the Antarctic nudibranch Austrodoris kerguelenensis (Opisthobranchia: Gastropoda). Mar Biol 141:101–109

    Article  Google Scholar 

  • Jacob U, Brey T, Fetzer I, Kaehler S, Mintenbeck K, Dunton K, Beyer K, Struck U, Pakhomov EA, Arntz WE (2006) Towards the trophic structure of the Bouvet Island marine ecosystem. Polar Biol 29:106–113

    Article  Google Scholar 

  • Janosik A, Mahon A, Halanych K (2011) Evolutionary history of Southern Ocean Odontaster sea star species (Odontasteridae; Asteroidea). Polar Biol 34:575–586

    Article  Google Scholar 

  • Koplovitz G, McClintock JB, Amsler CD, Baker BJ (2009) Palatability and anti-predatory chemical defenses in a suite of ascidians from the Western Antarctic Peninsula. Aquat Biol 7:81–92

    Article  Google Scholar 

  • Koplovitz G, McClintock JB, Amsler CD, Baker BJ (2011) A comprehensive evaluation of the potential chemical defenses of Antarctic ascidians against sympatric fouling microorganisms. Mar Biol 158:2661–2671

    Article  CAS  Google Scholar 

  • Kumagai N (2008) Role of food source and predator avoidance in habitat specialization by an octocoral-associated amphipod. Oecologia 155:739–749

    Article  PubMed  Google Scholar 

  • Lebar MD, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24:774–797

    Article  PubMed  CAS  Google Scholar 

  • Lippert H, Iken K, Volk C, Köck M, Rachor E (2004) Chemical defence against predators in a sub-Arctic fjord. J Exp Mar Biol Ecol 310:131–146

    Article  CAS  Google Scholar 

  • Lyle M, Gibbs S, Moore TC, Rea DK (2007) Late Oligocene initiation of the Antarctic circumpolar current: evidence from the South Pacific. Geology 35:691–694

    Article  Google Scholar 

  • Mahon AR, Amsler CD, McClintock JB, Amsler MO, Baker BJ (2003) Tissue-specific palatability and chemical defenses against macropredators and pathogens in the common articulate brachiopod Liothyrella uva from the Antarctic Peninsula. J Exp Mar Biol Ecol 290:197–210

    Article  CAS  Google Scholar 

  • McClintock JB (1989) Toxicity of shallow-water Antarctic echinoderms. Polar Biol 9:461–465

    Article  Google Scholar 

  • McClintock JB (1994) Trophic biology of Antarctic echinoderms. Mar Ecol Prog Ser 111:191–202

    Article  Google Scholar 

  • McClintock JB, Baker B (1997a) A review of the chemical ecology of Antarctic marine invertebrates. Am Zool 37:329–342

    CAS  Google Scholar 

  • McClintock JB, Baker BJ (1997b) Palatability and chemical defense of eggs, embryos and larvae of shallow-water Antarctic marine invertebrates. Mar Ecol Prog Ser 154:121–131

    Article  Google Scholar 

  • McClintock JB, Vernon JD (1990) Chemical defense in the eggs and embryos of Antarctic sea stars (Echinodermata). Mar Biol 105:491–495

    Article  Google Scholar 

  • McClintock JB, Heine J, Slattery M, Weston J (1990) Chemical bioactivity in common shallow-water Antarctic marine invertebrates. Antarc J US 25:204–206

    Google Scholar 

  • McClintock JB, Heine J, Slattery M, Weston J (1991) Biochemical and energetic composition, population biology, and chemical defense of the Antarctic ascidian Cnemidocarpa verrucosa Lesson. J Exp Mar Biol Ecol 147:163–175

    Article  CAS  Google Scholar 

  • McClintock JB, Slattery M, Heine J, Weston J (1992) Chemical defense, biochemical composition and energy content of three shallow-water Antarctic gastropods. Polar Biol 11:623–629

    Article  Google Scholar 

  • McClintock JB, Slattery M, Baker BJ, Heine JN (1993) Chemical ecology of Antarctic sponges from McMurdo Sound, Antarctica: ecological aspects. Antarc J US 28:134–135

    Google Scholar 

  • McClintock JB, Baker BJ, Slattery M, Hamann M, Kopitzke R, Heine J (1994a) Chemotactic tube-foot responses of a spongivorous sea star Perknaster fuscus to organic extracts from Antarctic sponges. J Chem Ecol 20:859–870

    Article  Google Scholar 

  • McClintock JB, Baker BJ, Slattery M, Heine JN, Bryan PJ, Yoshida W, Davies-Coleman MT, Faulkner DJ (1994b) Chemical defense of common Antarctic shallow-water nudibranch Tritoniella belli Eliot (Mollusca: Tritonidae) and its prey, Clavularia frankliniana Rouel (Cnidaria: Octocorallia). J Chem Ecol 20:3361–3372

    Article  CAS  Google Scholar 

  • McClintock JB, Amsler MO, Amsler CD, Southworth KJ, Petrie C, Baker BJ (2004) Biochemical composition, energy content and chemical antifeedant and antifoulant defenses of the colonial Antarctic ascidian Distaplia cylindrica. Mar Biol 145:885–894

    Article  CAS  Google Scholar 

  • McClintock JB, Amsler CD, Baker BJ (2010) Overview of the chemical ecology of benthic marine invertebrates along the Western Antarctic Peninsula. Integr Comp Biol 50:967–980

    Google Scholar 

  • Moon B, Baker BJ, McClintock JB (1998) Purine and nucleoside metabolites from the Antarctic sponge Isodictya erinacea. J Nat Prod 61:116–118

    Article  PubMed  CAS  Google Scholar 

  • Moyano HI, Wendt A (1981) Bryozoa epizoos de Psolus charcoti Vaney, 1907 (Holothuroidea, Psolidae). Ser Cient Inst Antart Chil 7:5–11

    Google Scholar 

  • Núñez-Pons L, Forestieri R, Nieto RM, Rodríguez J, Jiménez C, Nappo M, Ramos-Esplá AA, Varela M, Castelluccio F, Carbone M, Gavagnin M, Avila C (2010) Chemical ecology of tunicates of the genus Aplidium from the Weddell Sea (Antarctica). Polar Biol 33:1319–1329

    Article  Google Scholar 

  • Núñez-Pons L, Carbone M, Paris D, Melck D, Ríos P, Cristobo J, Castelluccio F, Gavagnin M, Avila C (2012) Chemo-ecological studies on hexactinellid sponges from the Southern Ocean. Naturwissenschaften 99:353–368

    Article  PubMed  Google Scholar 

  • Paul VJ (1992a) Ecological roles of marine natural products. Comstock Publications Association, Ithaca

    Google Scholar 

  • Paul VJ (1992b) Chemical defenses of benthic marine invertebrates. In: Paul V (ed) Ecological roles of marine natural products. Comstock Publications Association, Ithaca, pp 165–188

    Google Scholar 

  • Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209

    Article  PubMed  CAS  Google Scholar 

  • Pawlik JR (1993) Marine invertebrate chemical defenses. Chem Rev 93:1911–1922

    Article  CAS  Google Scholar 

  • Peters KJ, Amsler CD, McClintock JB, van Soest RWM, Baker BJ (2009) Palatability and chemical defenses of sponges from the Western Antarctic Peninsula. Mar Ecol Prog Ser 385:77–85

    Article  CAS  Google Scholar 

  • Pettibone MH (1969) The genera Polyeunoa McIntosh, Hololepidella Willey, and three new genera (Polychaeta, Polyneidae). P Biol Soc Wash 82:43–62

    Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defenses against herbivores. In: Rosenthal GA (ed) Herbivores: their interaction with secondary plant metabolites. Academic Press, Orlando, pp 4–55

    Google Scholar 

  • Scher HD, Martin EE (2006) Timing and climatic consequences of the opening of Drake Passage. Science 312:428–430

    Article  PubMed  CAS  Google Scholar 

  • Scheuer PJ (1990) Some marine ecological phenomena: chemical basis and biochemical potential. Science 248:173–177

    Article  PubMed  CAS  Google Scholar 

  • Sharp JH, Winson MK, Porter JS (2007) Bryozoan metabolites: an ecological perspective. Nat Prod Rep 24:659–673

    Article  PubMed  CAS  Google Scholar 

  • Skropeta D (2008) Deep-sea natural products. Nat Prod Rep 25:1131–1166

    Article  PubMed  CAS  Google Scholar 

  • Slattery M, McClintock JB (1995) Population structure and feeding deterrence in three shallow-water Antarctic soft corals. Mar Biol 122:461–470

    Article  Google Scholar 

  • Slattery M, Hamann MT, McClintock JB, Perry TL, Puglisi MP, Yoshida WY (1997) Ecological roles for water-borne metabolites from Antarctic soft corals. Mar Ecol Prog Ser 161:133–144

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman WH and Co, New York

    Google Scholar 

  • Sotka EE, Forbey J, Horn M, Poore AGB, Raubenheimer D, Whalen KE (2009) The emerging role of pharmacology in understanding consumer-prey interactions in marine and freshwater systems. Integr Comp Biol 49:291–313

    Article  PubMed  CAS  Google Scholar 

  • Thompson TE (1960) Defensive acid-secretion in marine gastropods. J Mar Biol Assoc UK 39:115–122

    Article  Google Scholar 

  • Wägele H, Ballesteros M, Avila C (2006) Defensive glandular structures in opisthobranch molluscs: from histology to ecology. Oceanogr Mar Biol Ann Rev 44:197–276

    Google Scholar 

  • Winston JE, Bernheimer AW (1986) Haemolytic activity in an Antarctic bryozoan. J Nat Hist 20:369–374

    Article  Google Scholar 

Download references

Acknowledgments

We are deeply obliged to W. Arntz, T. Brey, and the crew of R/V Polarstern for their support during the cruise ANT XXI/2. Thanks are also due to the “Bentart” team, especially to A. Ramos, I. Olaso, G. García-Castrillo, J. Matallanas, A. A. Ramos-Esplá, F. Ramil, C. Gambi, P. Ríos, and C. SanVicente, for their help on board the “BIO Hespérides”, and the scuba divers F. J. Cristobo, M. Ballesteros and J. A. Moya, during the ECOQUIM-2 cruise. Crews from the Unidad de Tecnología Marina (CSIC), the “Las Palmas”, the “BIO-Hespérides” as well as from the “Gabriel de Castilla” Spanish Antarctic Base provided logistic support during the ECOQUIM-2 cruise. Thanks are also due to J. Vázquez, M. Nappo, Y. Grzymbowski, and M. Planells for their help in the laboratory, and M. Ballesteros, P. Ríos, F. J. Cristobo, M. Varela, M. Edo, B. Figuerola, N. Anadón, A. Bosch, and A. A. Ramos-Esplá for their help in the taxonomical identification of the samples. The helpful comments on the manuscript of C. D. Amsler and A. Riesgo are also greatly acknowledged, as well as those from P. Dayton, G. Cimino and an anonymous reviewer. Funding was provided by the Ministry of Science and Innovation of Spain through the ECOQUIM (REN2003-00545, REN2002-12006E ANT and CGL2004-03356/ANT), and ACTIQUIM (CGL2007-65453/ANT) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Taboada.

Additional information

Sergi Taboada and Laura Núñez-Pons with equal contributions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taboada, S., Núñez-Pons, L. & Avila, C. Feeding repellence of Antarctic and sub-Antarctic benthic invertebrates against the omnivorous sea star Odontaster validus . Polar Biol 36, 13–25 (2013). https://doi.org/10.1007/s00300-012-1234-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1234-z

Keywords

Navigation