Skip to main content
Log in

The phylogeny of polar fishes and the structure, function and molecular evolution of hemoglobin

  • Review
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Fishes thriving in polar habitats offer many opportunities for comparative approaches to understanding protein thermal adaptations. Investigations on the remarkable evolutionary adaptations to these environments of basic proteins such as hemoglobin, the oxygen carrier, can provide new insights into the mechanisms studied in temperate organisms and can shed light on convergent processes evolved in response to thermal adaptations. At the molecular level, hemoglobins are one of the most intriguing systems for studying the relationships between environmental conditions and adaptations. This review summarizes the current knowledge on molecular structure, biological function and phylogeny of hemoglobins of fish species living in both polar habitats but having different evolutionary histories. In benthic, non-migratory, cold-adapted fishes, the stability of thermal conditions may have generated no or few variations in selective pressures on globin sequences through evolutionary time, so that sequences retain the species phylogenetic “signal”. In pelagic, migratory, cold-adapted or temperate fishes, variations in selective pressures on globin sequences caused by variations in temperature accompanying the dynamic life style may have disrupted the phylogenetic “signal” in phenetic trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldwin J (1980) Structure and cooperativity of hemoglobin. Trends Biochem Sci 5:224–228

    CAS  Google Scholar 

  • Baldwin J, Chothia C (1979) Haemoglobin: structural changes related to ligand binding and its allosteric mechanism. J Mol Biol 129:175–220

    Article  PubMed  CAS  Google Scholar 

  • Balushkin AV (1992) Classification, phylogenetic relationships, and origins of the families of the suborder Notothenioidei (Perciformes). J Ichthyol 32:90–110

    Google Scholar 

  • Balushkin AV (2000) Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). J Ichthyol 40:S74–S109

    Google Scholar 

  • Bargelloni L, Lecointre G (1998) Four years in Notothenioid systematics: a molecular perspective. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Berlin Heidelberg New York, pp 259–273

    Google Scholar 

  • Bargelloni L, Ritchie PA, Patarnello T, Battaglia B, Lambert DM, Meyer A (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11:854–863

    PubMed  CAS  Google Scholar 

  • Bargelloni L, Marcato S, Zane LG, Patarnello T (2000a) Mitochondrial phylogeny of Notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol 49:114–129

    Article  CAS  Google Scholar 

  • Bargelloni L, Zane L, Derome N, Lecointre G, Patarnello T (2000b) Molecular zoogeography of Antarctic euphausiids and notothenioids: from species phylogenies to intraspecific patterns of genetic variation. Antarctic Sci 12:259–268

    Google Scholar 

  • Berenbrink M, Koldkjær P, Kepp O, Cossins AR (2005) Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307:1752–1757

    Article  PubMed  CAS  Google Scholar 

  • Brittain T (1987) The Root effect. Comp Biochem Physiol 86B:473–481

    CAS  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997a) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94:3811–3816

    Article  CAS  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997b) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci USA 94:3817–3822

    Article  CAS  Google Scholar 

  • Chen WJ, Bonillo C, Lecointre G (1998) Phylogeny of the Channichthyidae (Notothenioidei, teleostei) based on two mitochondrial genes. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Berlin Heidelberg New York, pp 287–298

    Google Scholar 

  • Cheng C-HC, DeVries AL (1991) The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold-water fish. In: di Prisco G (ed) Life under extreme conditions: biochemical adaptation. Springer, Berlin Heidelberg New York, pp 1–14

    Google Scholar 

  • Cheng C-HC, Chen L, Near TJ, Jin Y (2003) Functional antifreeze glycoprotein genes in temperate–water New Zealand nototheniid fish infer an Antarctic evolutionary origin. Mol Biol Evol 20:1897–1908

    Article  PubMed  CAS  Google Scholar 

  • Clarke A, Johnston I (1996) Evolution and adaptive radiation of Antarctic fishes. TREE 11:212–218

    Google Scholar 

  • D’Avino R, Caruso C, Tamburrini M, Romano M, Rutigliano B, Polverino de Laureto P, Camardella L, Carratore V, di Prisco G (1994) Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J Biol Chem 269:9675–9681

    PubMed  CAS  Google Scholar 

  • Derome N, Chen WJ, Dettaï A, Bonillo C, Lecointre G (2002) Phylogeny of Antarctic dragon fishes (Bathydraconidae, Notothenioidei, Teleostei) and related families based on their anatomy and two mitochondrial genes. Mol Phyl Evol 24:139–152

    Article  CAS  Google Scholar 

  • Dettaï A, Lecointre G (2004) In search for notothenioid (Teleostei) relatives. Antarctic Sci 16:71–85

    Article  Google Scholar 

  • Dettaï A, Lecointre G (2005) Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush. CR Biol 328:674–689

    Google Scholar 

  • DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–331

    Google Scholar 

  • Dickerson RE, Geiss I (1983) Hemoglobin: structure, function, evolution, and pathology. The Benjamin/Cummings Publishing Company, Menlo Park

    Google Scholar 

  • Eakin RR (1981) Osteology and relationships of the fishes of the Antarctic family Harpagiferidae (Pisces, Notothenioidei). In: Kornicker LS (ed) Biology of the Antarctic Seas. IX. Antarctic Res Series, vol 31. Washington, pp 81–147

  • Eastman JT (1988) Ocular morphology in Antarctic notothenioid fishes. J Morphol 196:927–934

    Article  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic Press, San Diego

    Google Scholar 

  • Eastman JT (1997) Comparison of the Antarctic and Arctic fish faunas. Cybium 12:276–287

    Google Scholar 

  • Eastman JT (2000) Antarctic notothenioid fishes as subjects for research in evolutionary biology. Antarctic Sci 12:276–287

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Article  Google Scholar 

  • Eastman JT, Clarke A (1998) A comparison of adaptive radiations of Antarctic fish with those of non-Antarctic fish. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Berlin Heidelberg New York, pp 3–26

    Google Scholar 

  • Eastman JT, McCune AR (2000) Fishes on the Antarctic shelf: evolution of a marine species flock? J Fish Biol 57:84–102

    Google Scholar 

  • Everson I, Ralph R (1968) Blood analyses of some Antarctic fish. Br Antarctic Surv Bull 15:59–62

    Google Scholar 

  • Fago A, D’Avino R, di Prisco G (1992) The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. Eur J Biochem 210:963–970

    Article  PubMed  CAS  Google Scholar 

  • Gardner PR, Gardner AM, Martin LA, Salzman AL (1998) Nitric oxide dioxygenase: An enzymic function for flavohemoglobin. Proc Natl Acad Sci USA 95:10378–10383

    Article  PubMed  CAS  Google Scholar 

  • Gelin BR, Lee AW-N, Karplus M (1983) Haemoglobin tertiary structural change on ligand binding. J Mol Biol 171:489–559

    Article  PubMed  CAS  Google Scholar 

  • Giordano D, Grassi L, Parisi E, Bargelloni L, di Prisco G, Verde C (2006) Embryonic β-globin in the non-Antarctic notothenioid fish Cottoperca gobio (Bovichtidae). Polar Biol (in press)

  • Grande L, Eastman JT (1986) A review of Antarctic ichthyofaunas in the light of new fossil discoveries. Paleontology 29:113–137

    Google Scholar 

  • Hardison R (1998) Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J Exp Biol 201:1099–1117

    PubMed  CAS  Google Scholar 

  • Hastings PA (1993) Relationships of fishes of the perciform suborder Notothenioidei. In: Miller RG (eds) A history and atlas of the fishes of the Antarctic Ocean. Foresta Institute for Ocean and Mountain Studies, Carson City, pp 99–107

    Google Scholar 

  • Hureau J-C, Petit D, Fine JM, Marneux M (1977) New cytological, biochemical and physiological data on the colorless blood of the Channichthyidae (Pisces, Teleosteans, perciformes). In: Llano GA (eds) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington, pp 459–477

    Google Scholar 

  • Imamura H, Yabe M (2002) Demise of the scorpaeniformes (Actinopterygii: Percomorpha): an alternative phylogenetic hypothesis. Bull Fish Sci Hokkaido Univ 53:107–132

    Google Scholar 

  • Ito N, Komiyama NH, Fermi G (1995) Structure of deoxyhaemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded haemoglobin structures. J Mol Biol 250:648–658

    Article  PubMed  CAS  Google Scholar 

  • Iwami T (1985) Osteology and relationships of the family Channichthyidae. Mem Natl Inst Pol Res Tokyo Ser E 36:1–69

    Google Scholar 

  • Kennett JP (1982) Marine geology. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Lecointre G, Ozouf-Costaz C (2004) Les poissons à antigel de l’océan austral. Pour La Science (in french)

  • Lecointre G, Bonillo C, Ozouf-Costaz C, Hureau J-C (1997) Molecular phylogeny of the Antarctic fishes: paraphyly of the Bovichtidae and no indication for the monophyly of the Notothenioidei (Teleostei). Polar Biol 18:193–208

    Article  Google Scholar 

  • Mayr E (1974) Populations, espèces et évolution. Hermann, Paris

  • Maruyama K, Yasumasu S, Iuchi I (2004) Evolution of globin genes of the medaka Oryzias latipes (Euteleostei; Beloniformes; Oryziinae). Mech Dev 121:753–769

    Article  PubMed  CAS  Google Scholar 

  • Mazzarella L, D’Avino R, di Prisco G, Savino C, Vitagliano L, Moody PCE, Zagari A (1999) Crystal structure of Trematomus newnesi haemoglobin re-opens the Root effect question. J Mol Biol 287:897–906

    Article  PubMed  CAS  Google Scholar 

  • Mazzarella L, Bonomi G, Lubrano MC, Merlino A, Riccio A, Vergara A, Vitagliano L, Verde C, di Prisco G (2006) Minimal structural requirements for Root effect: crystal structure of the cathodic hemoglobin isolated from the Antarctic fish Trematomus newnesi. Proteins 62:316–321

    Article  PubMed  CAS  Google Scholar 

  • Minning DM, Gow AJ, Bonaventura J, Braun R, Dewhirst M, Goldberg DE, Stamler JS (1999) Ascaris haemoglobin is a nitric oxide-activated “deoxygenase”. Nature 401:497–502

    Article  PubMed  CAS  Google Scholar 

  • Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phyl Evol 26:121–138

    Article  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    PubMed  CAS  Google Scholar 

  • Near T (2004) Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarctic Sci 16:37–44

    Article  Google Scholar 

  • Near T, Pesavento JJ, Cheng C-HC (2004) Phylogenetic investigations of Antarctic fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Mol Phyl Evol 32:881–891

    Article  CAS  Google Scholar 

  • Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature 228:726–739

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1983) Species adaptation in a protein molecule. Mol Biol Evol 1:1–28

    PubMed  CAS  Google Scholar 

  • Perutz MF, Fermi G, Luisi B, Shanan B, Liddington RC (1987) Stereochemistry of cooperative mechanisms in hemoglobin. Acc Chem Res 20:309–321

    Article  CAS  Google Scholar 

  • Pisano E, Ozouf-Costaz C, Prirodina V (1998) Chromosome diversification in Antarctic fish (Notothenioidei) In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. A biological overview. Springer, Berlin Heidelberg New York, pp 275–285

    Google Scholar 

  • di Prisco G, Giardina B, D’Avino R, Condò SG, Bellelli A, Brunori M (1988) Antarctic fish hemoglobin: an outline of the molecular structure and oxygen binding properties—II. Oxygen binding properties. Comp Biochem Physiol 90B:585–591

    Google Scholar 

  • di Prisco G, D’Avino R, Caruso C, Tamburrini M, Camardella L, Rutigliano B, Carratore V, Romano M (1991) The biochemistry of oxygen transport in red-blooded Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic Fish. Springer, Berlin Heidelberg New York, pp 263–281

    Google Scholar 

  • Riccio A, Tamburrini M, Carratore V, di Prisco G (2000) Functionally distinct hemoglobins of the cryopelagic Antarctic teleost Pagothenia borchgrevinki. J Fish Biol 57:20–32

    Article  CAS  Google Scholar 

  • Riggs A (1988) The Bohr effect. Annu Rev Physiol 50:181–204

    Article  PubMed  CAS  Google Scholar 

  • Ritchie PA, Lavoué S, Lecointre G (1997) Molecular phylogenetics and evolution of Antarctic notothenioid fishes. Comp Biochem Physiol 4:1009–1027

    Article  Google Scholar 

  • Root RW (1931) The respiratory function of the blood of marine fishes. Biol Bull 61:427–456

    Article  CAS  Google Scholar 

  • Root RW, Irving L (1941) The equilibrium between hemoglobin and oxygen in whole and hemolysed blood of the tautog, with a theory of the Haldane effect. Biol Bull 81:307–323

    Article  CAS  Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850

    Article  PubMed  CAS  Google Scholar 

  • Sanchez S, Dettaï A, Bonillo C, Ozouf-Costaz C, Detrich HW, Lecointre G (2006) Molecular and morphological phylogenies of the Antarctic teleostean family Nototheniidae, with emphasis on the Trematominae. Polar Biol (in press)

  • Scholander PF (1954) Secretion of gases against high pressures in the swimbladder of deep sea fishes. II. The rete mirabile. Biol Bull 107:260–277

    Article  Google Scholar 

  • Stam WT, Beintema JJ, D’Avino R, Tamburrini M, di Prisco G (1997) Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei). J Mol Evol 45:437–445

    Article  PubMed  CAS  Google Scholar 

  • Stehmann M, Burkel DL (1990) Rajidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 86–97

    Google Scholar 

  • Tamburrini M, D’Avino R, Fago A, Carratore V, Kunzmann A, di Prisco G (1996) The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. J Biol Chem 271:23780–23785

    Article  PubMed  CAS  Google Scholar 

  • Verde C, di Prisco G (2003) The oxygen transport system of polar fish: the evolution of hemoglobin. Ocean Polar Res 25:617–623

    Article  CAS  Google Scholar 

  • Verde C, di Prisco G (2004) Structure/function and phylogeny of hemoglobins of polar fishes. Micron 35:77–80

    Article  PubMed  CAS  Google Scholar 

  • Verde C, Carratore V, Riccio A, Tamburrini M, Parisi E, di Prisco G (2002) The functionally distinct hemoglobins of the Arctic spotted wolffish Anarhichas minor. J Biol Chem 277:36312–36320

    Article  PubMed  CAS  Google Scholar 

  • Verde C, Parisi E, di Prisco G (2003) The evolution of polar fish hemoglobin: a phylogenetic analysis of the ancestral amino acid residues linked to the Root effect. J Mol Evol 57:S258–S267

    Article  PubMed  CAS  Google Scholar 

  • Verde C, Howes BD, De Rosa MC, Raiola L, Smulevich G, Williams R, Giardina B, Parisi E, di Prisco G (2004a) Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes. Prot Sci 13:2766–2781

    Article  CAS  Google Scholar 

  • Verde C, Parisi E, di Prisco G (2004b) The evolution of polar fish hemoglobin: structure, function and phylogeny. Antarctic Sci 16:59–69

    Article  Google Scholar 

  • Verde C, De Rosa MC, Giordano D, Mosca D, de Pascale D, Raiola L, Cocca E, Carratore V, Giardina B, di Prisco G (2005) Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea. Biochem J 389:297–306

    Article  PubMed  CAS  Google Scholar 

  • Verde C, Balestrieri M, de Pascale D, Pagnozzi D, Lecointre G, di Prisco G (2006) The oxygen-transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of haemoglobin. J Biol Chem 281:22075–22084

    Article  CAS  Google Scholar 

  • Wells RMG, Ashby MD, Duncan SJ, Macdonald JA (1980) Comparative studies of the erythrocytes and haemoglobins in nototheniid fishes from Antarctica. J Fish Biol 17:517–527

    Article  Google Scholar 

  • Wells RMG, Macdonald JA, di Prisco G (1990) Thin-blooded Antarctic fishes: a rheological comparison of the haemoglobin-free icefishes, Chionodraco kathleenae and Cryodraco antarcticus, with a red-blooded nototheniid, Pagothenia bernacchii. J Fish Biol 36:595–609

    Article  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (1974) The choroid rete mirabile. I. Oxygen secretion and structure: comparison with the swimbladder rete mirabile. Biol Bull 146:116–136

    Article  PubMed  CAS  Google Scholar 

  • Yonetani T, Park S, Tsuneshige A, Imai K, Kanaori K (2002) Global allostery model of hemoglobin. J Biol Chem 277:34508–34520

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Dr. G. Hempel for inviting us to write this review. This study is supported by the Italian National Programme for Antarctic Research (PNRA). It is in the framework of the Arctic Strategic Programme of the Italian National Research Council, the SCAR programmes Ecology of the Antarctic Sea Ice Zone (EASIZ), Evolutionary Biology of Antarctic Organisms (EVOLANTA) and Evolution and Biodiversity in the Antarctic (EBA), and the 2003 and 2005 TUNU-I and TUNU-II cruises near Greenland. We also thank the captain, crew and personnel of Raytheon Polar Services aboard the RVIB Nathaniel B. Palmer for their excellent assistance during the ICEFISH cruise. The ICEFISH cruise was supported by National Science Foundation grant OPP 01-32032 to H. William Detrich (Northeastern University, Boston USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido di Prisco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verde, C., Lecointre, G. & di Prisco, G. The phylogeny of polar fishes and the structure, function and molecular evolution of hemoglobin. Polar Biol 30, 523–539 (2007). https://doi.org/10.1007/s00300-006-0217-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0217-3

Keywords

Navigation