Skip to main content
Log in

Thermal sensitivity of scope for activity in Pagothenia borchgrevinki, a cryopelagic Antarctic nototheniid fish

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The thermal sensitivity of scope for activity was studied in the Antarctic nototheniid fish Pagothenia borchgrevinki. The scope for activity of P. borchgrevinki at 0°C was 189 mg O2 kg−1 h−1 (factorial scope 6.8) which is similar to that of temperate and tropical species at their environmental temperatures, providing no evidence for metabolic cold adaptation of maximum activity. The scope for activity increased to a maximum value of 266 mg Okg−1 h−1 (factorial scope 8.3) at 3°C and then decreased from 3 to 6°C. The thermal sensitivity of critical swimming speed was also investigated and followed a similar pattern to aerobic scope for activity, suggesting oxygen limitation of aerobic performance. Oxygen consumption rates and ventilation frequencies were monitored for 24 h after the swimming challenge and the recovery of both parameters to resting levels was rapid and independent of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altringham JD, Johnston IA (1988) Activation of multiply innervated fast and slow myotomal muscle fibres of the teleost Myoxocephalus scorpius. J Exp Biol 140:313–324

    Google Scholar 

  • Andriashev AP (1970) Cryopelagic fishes of the Arctic and Antarctic and their significance in polar ecosystems. In: Holdgate MW (eds) Antarctic ecology, vol 1. Academic Press, London, pp 297–304

  • Blazka P, Volf M, Cepela M (1960) A new type of respirometer for the determination of the metabolism of fish in an active state. Physiol Bohemoslov 9:553–560

    Google Scholar 

  • Bligh J, Cloudsey-Thompson J, Macdonald A (1976) Environmental physiology of animals. Blackwell, Oxford

    Google Scholar 

  • Boyce S, Clarke A (1997) Effect of body size and ration on the SDA in the Antarctic plunderfish. Physiol Zool 70:679–690

    PubMed  CAS  Google Scholar 

  • Boyce S, Murray A, Peck L (2000) Digestion rate, gut passage time and absorption efficiency in the Antarctic spiny plunderfish. J Fish Biol 57(4):908–929

    Article  Google Scholar 

  • Brett JR (1964) The respiratory metabolism and swimming performance of young sockeye salmon. J Fish Res Board Can 21(5):1183–1226

    Google Scholar 

  • Brett JR, Groves T (1979) Physiological energetics. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol VIII. Academic Press, New York, pp 279–352

  • Brodeur J, Peck L, Johnston I (2002) Feeding increases MyoD and PCNA expression in myogenic progenitor cells of Notothenia coriiceps. J Fish Biol 60(6):1475–1485

    Google Scholar 

  • Cech JJ (1990) Respirometry. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, Maryland, pp 335–362

    Google Scholar 

  • Clarke A (1998) Temperature and energetics: an introduction to cold ocean physiology. In: Pörtner HO, Playle RC (eds) Cold ocean physiology. Society for Experimental Biology Seminar Series 66. Cambridge University Press, Cambridge, pp 3–30

  • Cossins A, Bowler K (1987) Temperature biology of animals. Chapman and Hall, London

    Google Scholar 

  • Davison W (1998) X-cell gill disease in Pagothenia borchgrevinki from McMurdo Sound, Antarctica. Polar Biol 19:17–23

    Article  Google Scholar 

  • Davison W, Forster ME, Franklin CE, Taylor H (1988) Recovery from exhausting exercise in an Antarctic fish, Pagothenia borchgrevinki. Polar Biol 8:167–171

    Article  Google Scholar 

  • Dunn JF (1988) Muscle metabolism in Antarctic fish. Comp Biochem Physiol 90B:539–545

    CAS  Google Scholar 

  • Dunn JF, Johnston IA (1986) Metabolic constraints on burst-swimming n the Antarctic teleost Notothenia neglecta. Mar Biol 91:433–440

    Article  CAS  Google Scholar 

  • Duthie GG (1982) The respiratory metabolism of temperature adapted flatfish at rest and during swimming activity and the use of anaerobic metabolism at moderate speeds. J Exp Biol 97:359–373

    PubMed  CAS  Google Scholar 

  • Fernandes MN, Rantin FT (1989) Respiratory responses of Oreochromis niloticus (Pisces, Cichlidae) to environmental hypoxia under different thermal conditions. J Fish Biol 35:509–519

    Article  Google Scholar 

  • Forster ME, Franklin CE, Taylor HH, Davison W (1987) The aerobic scope of an Antarctic fish, Pagothenia borchgrevinki, and its significance for metabolic cold adaptation. Polar Biol 8:155–159

    Article  Google Scholar 

  • Forster ME, Davison W, Axelsson M, Sundin L, Franklin CE, Gieseg S (1998) Catecholamine release in heat-stressed Antarctic fish causes proton extrusion by the red cells. J Comp Physiol 168B:345–352

    Google Scholar 

  • Fry FEJ (1947) Effects of environment on animal activity. Publications of the Ontario Fisheries Research Laboratory 55:1–62

    Google Scholar 

  • Gordon MS, Chin HG, Vojkovich M (1989) Energetics of swimming in fishes using different methods of locomotion: I. Labriform swimmers. Fish Physiol Biochem 6:341–352

    Article  Google Scholar 

  • Guynn S, Dowd F, Petzel D (2002) Characterization of gill Na/K-ATPase activity and ouabain binding in Antarctic and New Zealand notothenioid fishes. Comp Biochem Physiol 131A:363–374

    CAS  Google Scholar 

  • Hochachka PW, Somero GN (2002) Temperature, biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York, pp 290–449

    Google Scholar 

  • Holeton GF (1974) Metabolic cold adaptation of polar fish: fact or artifact. Physiol Zool 47:137–151

    Google Scholar 

  • Hughes GM, LeBras-Pennec Y, Pennec J-P (1988) Relationships between swimming speed, oxygen consumption, plasma catecholamines and heart performance in rainbow trout (S. gairdneri R.). Exp Biol 48:45–49

    Article  PubMed  CAS  Google Scholar 

  • Johnston IA, Battram JC (1993) Feeding energetics and metabolism in demersal fish species from Antarctic, temperate and tropical environments. Mar Biol 115:7–14

    Article  Google Scholar 

  • Johnston IA, Davison W, Goldspink G (1977) Energy metabolism of carp swimming muscles. J Comp Physiol 144B:203–216

    Google Scholar 

  • Johnston IA, Clarke A, Ward P (1991) Temperature and metabolic rate in sedentary fish from the Antarctic, North Sea and Indo-West Pacific Ocean. Mar Biol 109:191–195

    Article  Google Scholar 

  • Kelsch SW, Neill WH (1990) Temperature preference versus acclimation in fishes: selection for changing metabolic optima. Trans Am Fish Soc 119:601–610

    Article  Google Scholar 

  • Lowe CJ, Davison W (2005) Plasma osmolarity, glucose concentration and erythrocyte responses of two Antarctic nototheniid fishes to acute and chronic thermal change. J Fish Biol 67:752–766

    Article  Google Scholar 

  • Mallekh R, Lagardere JP (2002) Effect of temperature and dissolved oxygen concentration on the metabolic rate of the turbot and the relationship between metabolic scope and feeding demand. J Fish Biol 60:1105–1115

    Article  Google Scholar 

  • Montgomery JC, Macdonald JA (1984) Performance of motor systems in Antarctic fishes. J Comp Physiol 154:241–248

    Article  Google Scholar 

  • Morris D, North A (1984) Oxygen consumption of five species of fish from South Georgia. J Exp Mar Biol Ecol 78:75–86

    Article  Google Scholar 

  • Perry SF, Wood CM (1989) Control and coordination of gas transfer in fishes. Can J Zool 67:2961–2970

    Article  Google Scholar 

  • Peterson RH, Anderson JM (1969) Influence of temperature change on spontaneous locomotor activity and oxygen consumption of Atlantic salmon, Salmo salar, acclimated to two temperatures. J Fish Res Board Can 26:93–109

    Google Scholar 

  • Randall DJ, Brauner C (1991) Effects of environmental factors on exercise in fish. J Exp Biol 160:113–126

    Google Scholar 

  • Saint-Paul U, Hubold G, Ekau W (1988) Acclimation effects on routine oxygen consumption of the Antarctic fish Pogonophryne scotti (Artedidraconidae). Polar Biol 9:125–128

    Article  Google Scholar 

  • Sayer MDJ, Davenport J (1987) The relative importance of the gills to ammonia and urea excretion in five seawater and one freshwater teleost species. J Fish Biol 31:561–571

    Article  Google Scholar 

  • Seebacher F, Davison W, Lowe CJ, Franklin CE (2005) A falsification of the thermal specialization paradigm: compensation to elevated temperatures in Antarctic fish. Biol Lett 1:151–154

    Article  PubMed  Google Scholar 

  • Somero GN, De Vries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258

    PubMed  CAS  Google Scholar 

  • Stevens ED, Fry FEJ (1972) The effect of changes in ambient temperature on spontaneous activity in skipjack tuna. Comp Biochem Physiol 42A:803–805

    Article  Google Scholar 

  • Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. I. Problem and strategy. Resp Physiol 44:1–10

    Article  CAS  Google Scholar 

  • Taylor EW, Egginton S, Taylor SE, Butler PJ (1997) Factors which may limit swimming performance at different temperatures. In: Wood CM, McDonald DG (eds) Global warming: implications for freshwater and marine fish. Society for Experimental Biology Seminar Series 61. Cambridge University Press, Cambridge, pp 105–133

  • Tetens V, Wells RMG, De Vries AL (1984) Antarctic fish blood: respiratory properties and the effects of thermal acclimation. J Exp Biol 109:265–279

    CAS  Google Scholar 

  • Tuckey N, Davison W (2004) Mode of locomotion places selective pressure on Antarctic and temperate labriform swimming fish. Comp Biochem Physiol 138A:391–398

    CAS  Google Scholar 

  • Walesby NJ, Johnston IA (1979) Activities of some enzymes of energy metabolism in the fast and slow muscles of an Antarctic teleost fish (Notothenia rossii). Biochem Soc Trans 7:659–661

    PubMed  CAS  Google Scholar 

  • Waller U (1992) Factors influencing routine oxygen uptake in turbot, Scophthalmus maximus. J Appl Ichthyol 8:62–71

    Google Scholar 

  • Wells RMG (1987) Respiration of Antarctic fish from McMurdo Sound. Comp Biochem Physiol 88A:417–424

    Article  Google Scholar 

  • Wilson RS, Kuchel LJ, Franklin CE, Davison W (2002) Turning up the heat on subzero fish: thermal dependence of sustained swimming in an Antarctic notothenioid. J Thermal Biol 27(5):381–387

    Article  Google Scholar 

  • Wohlschlag DE (1964) Respiratory metabolism and ecological characteristics of some fishes in McMurdo Sound, Antarctica. In: Lee MO (eds) Biology of the Antarctic Seas, vol. 1. American Geophysical Union, Washington, pp 33–62

Download references

Acknowledgements

We acknowledge the invaluable logistical support provided by Antarctica New Zealand during the Antarctic fieldwork, and the doctoral scholarship funding from the New Zealand Foundation for Research, Science and Technology (C. Lowe). The experimental protocols were approved by the University of Canterbury Animal Ethics Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cara J. Lowe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowe, C.J., Davison, W. Thermal sensitivity of scope for activity in Pagothenia borchgrevinki, a cryopelagic Antarctic nototheniid fish. Polar Biol 29, 971–977 (2006). https://doi.org/10.1007/s00300-006-0139-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0139-0

Keywords

Navigation