Skip to main content
Log in

Analysis of trace metals in the Antarctic host-parasite system Notothenia coriiceps and Aspersentis megarhynchus (Acanthocephala) caught at King George Island, South Shetland Islands

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Concentrations of the elements Al, Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Sr were analysed by high-performance quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) in the acanthocephalan Aspersentis megarhynchus and in different tissues of its final host, Notothenia coriiceps. Infected fish were sampled at King George Island, South Shetland Islands, Antarctica. Most of the elements were found at significantly higher concentrations in the acanthocephalan than in muscle, liver and intestine of its host. Only Fe was concentrated in fish liver to a significantly higher level than in the parasite. Compared with the host tissues, the highest accumulation rates in A. megarhynchus were found for Pb, Cd, Ag, Ni and Cu. The acanthocephalans showed very high Ag and Pb levels, whereas the concentrations in the fish tissues were close to the detection limit. This study is the first proof that the enormous heavy-metal accumulation capacity reported for acanthocephalans from freshwater fish also occurs in acanthocephalans parasitizing marine fish. Consequently, acanthocephalans can be used to assess the occurrence and availability of even the lowest metal concentrations in all kinds of aquatic habitats, including remote areas such as the Antarctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c.
Fig. 2a–e.

Similar content being viewed by others

References

  • Abbott SB, Benninghoff WS (1990) Orientation of environmental change studies to the conservation of Antarctic ecosystems. In: Kerry KR, Hempel G (eds) Antarctic ecosystems. Ecological change and conservation. Springer, Berlin Heidelberg New York, pp 394–403

  • Ahn I-Y, Lee SH, Kim KT, Shim JH, Kim D-Y (1996) Baseline heavy metal concentrations in the Antarctic clam, Laternula elliptica in Maxwell Bay, King George Island, Antarctica. Mar Pollut Bull 32:592–598

    Article  CAS  Google Scholar 

  • Ahn I-Y, Kim K-W, Choi HJ (2002) A baseline study on metal concentrations in the Antarctic limpet, Nacella concinna (Gastropoda: Patellidae) on King George Island: variations with sex and body parts. Mar Pollut Bull 44:421–431

    Article  PubMed  Google Scholar 

  • Bargagli R, Nelli L, Ancora S, Focardi S (1996) Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biol 16:513–520

    Article  Google Scholar 

  • Barrera-Oro ER, Casaux RJ (1990) Feeding selectivity in Notothenia neglecta Nybelin, from Potter Cove, South Shetland Islands, Antarctica. Antarct Sci 2:207–213

    Google Scholar 

  • Beeby A (2001) What do sentinels stand for? Environ Pollut 112:285–298

    Article  CAS  PubMed  Google Scholar 

  • Bryan GW, Langston WJ, Hummerstone LG, Burt GR (1985) A guide to the assessment of heavy metal contamination in estuaries using biological indicators. Occas Publ Mar Biol Assoc UK 4:1–92

    Google Scholar 

  • Cope WG, Bartsch MR, Rada RG, Balogh SJ, Rupprecht JE, Young RD, Johnson DK (1999) Bioassessment of mercury, cadmium, polychlorinated biphenyls, and pesticides in the Upper Mississippi River with zebra mussels (Dreissena polymorpha). Environ Sci Technol 33:4385–4390

    Article  CAS  Google Scholar 

  • Cripps GC (1992) Natural and anthropogenic hydrocarbons in the Antarctic marine environment. Mar Pollut Bull 25:266–273S

    CAS  Google Scholar 

  • Duquesne S, Riddle MJ (2002) Biological monitoring of heavy metal contamination in coastal waters off Casey Station, Windmill Islands, East Antarctica. Polar Biol 25:206–215

    Google Scholar 

  • Duquesne S, Riddle MJ, Schulz R, Liess M (2000) Effects of contaminants in the Antarctic environment—potential of the gammarid amphipod crustacean Paramorea walkeri as a biological indicator for Antarctic ecosystems based on toxicity and bioaccumulation of copper and cadmium. Aquat Toxicol 49:131–143

    Article  CAS  PubMed  Google Scholar 

  • Focardi S, Bargagli R, Corsolini S (1995) Isomer-specific analysis and toxic potential evaluation of polychlorinated biphenyls in Antarctic fish, seabirds and Weddell seals from Terra Nova Bay (Ross Sea). Antarct Sci 7:31–35

    Google Scholar 

  • Gunkel G (1994) Bioindikation in aquatischen Ökosystemen. Fischer, Jena

  • Hellou J, Fancey LL, Payne JF (1992) Concentrations of twenty-four elements in bluefin tuna, Thunnus thynnus from the Northwest Atlantic. Chemosphere 24:211–218

    CAS  Google Scholar 

  • Hellou J, Zitko V, Friel J, Alkanani T (1996) Distribution of elements in tissues of yellowtail flounder Pleuronectes ferruginea. Sci Total Environ 181:137–146

    Article  CAS  Google Scholar 

  • Hendriks AJ, Pieters H, De Boer J (1998) Accumulation of metals, polycyclic (halogenated) aromatic hydrocarbons, and biocides in zebra mussel and eel from the Rhine and Meuse rivers. Environ Toxicol Chem 17:1885–1898

    CAS  Google Scholar 

  • Huebers HA, Finch CA (1984) Eisen. In: Merian E (ed) Metalle in der Umwelt: Verteilung, Analytik und biologische Relevanz. Verlag Chemie, Weinheim, pp 435–444

  • Kahle J, Zauke G-P (2002) Bioaccumulation of trace metals in the copepod Calanoides acutus from the Weddell Sea (Antarctica): comparison of two-compartment and hyperbolic toxicokinetic models. Aquat Toxicol 59:115–135

    Article  CAS  PubMed  Google Scholar 

  • Kennicutt MC Jr, McDonald SJ (1996) Marine disturbance—contaminants. In: Ross RM, Hofmann E, Quetin LB (eds) Foundations for ecological research west of the Antarctic Peninsula 70. American Geophysical Union, Vol 70, pp 401–415

  • Kennicutt MC Jr, McDonald SJ, Sericano JL, Boothe P, Oliver J, Safe P, Presley BJ, Liu H, Wolfe D, Wade TL, Crockett A, Bockus D (1995) Human contamination of the marine environment—Arthur Harbor and McMurdo Sound, Antarctica. Environ Sci Technol 29:1279–1287

    CAS  Google Scholar 

  • Lohan CM, Statham PJ, Peck L (2001) Trace metals in the Antarctic soft-shelled Laternula elliptica: implications for metal pollution from Antarctic research stations. Polar Biol 24:808–817

    Article  Google Scholar 

  • Lyons D (1993) Environmental impact assessment in Antarctica under the protocol on environmental protection. Polar Rec 29:111–120

    Google Scholar 

  • Márquez M, Vodopivez C, Casaux R, Curtosi A (1998) Metal (Fe, Zn, Mn and Cu) levels in the Antarctic fish Notothenia coriiceps. Polar Biol 20:404–408

    Article  Google Scholar 

  • Moldovan M, Rauch S, Gómez M, Palacios MA, Morrison GM (2001) Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopod Asellus aquaticus. Water Res 35:4175–4183

    Article  CAS  PubMed  Google Scholar 

  • Moreno JEA de, Gerpe MS, Moreno VJ, Vodopivez C (1997) Heavy metals in Antarctic organisms. Polar Biol 17:131–140

    Article  Google Scholar 

  • Roditi HA, Fisher NS, Sanudo-Wilhelmy SA (2000) Field testing a metal bioaccumulation model for zebra mussels. Environ Sci Technol 34:2817–2825

    CAS  Google Scholar 

  • Saeki A, Nakajima M, Loughlin TR, Calkins DC, Baba N, Kiyota M, Tatsukawa R (2001) Accumulation of silver in the liver of three species of pinnipeds. Environ Pollut 112:19–25

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Hernandez JC (2000) Trace element contamination in Antarctic ecosystems. Rev Environ Contam 166:83–127

    CAS  Google Scholar 

  • Schludermann C, Konecny R, Laimgruber S, Schiemer F, Lewis JW, Sures B (2003) Fish macroparasites as indicators of heavy metal pollution. Parasitology (in press)

  • Sures B (2001) The use of fish parasites as bioindicators of heavy metals in aquatic ecosystems: a review. Aquat Ecol 35:245–255

    Article  CAS  Google Scholar 

  • Sures B (2003) Accumulation of heavy metals by intestinal helminths in fish: facts, appraisal and perspectives. Parasitology (in press)

    Google Scholar 

  • Sures B, Siddall R (1999) Pomphorhynchus laevis: the intestinal acanthocephalan as a lead sink for its fish host, chub (Leuciscus cephalus). Exp Parasitol 93:66–72

    CAS  PubMed  Google Scholar 

  • Sures B, Siddall R (2001) Comparison between lead accumulation of Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) and in the body cavity of goldfish (Carassius auratus auratus). Int J Parasitol 31:669–673

    Article  CAS  PubMed  Google Scholar 

  • Sures B, Siddall R (2003) Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) as an indicator of metal pollution. Int J Parasitol 33:65–70

    Article  CAS  PubMed  Google Scholar 

  • Sures B, Taraschewski H (1995) Cadmium concentrations of two adult acanthocephalans, Pomphorhynchus laevis and Acanthocephalus lucii, as compared with their fish hosts and cadmium and lead levels in larvae of A. lucii as compared with their crustacean host. Parasitol Res 81:494–497

    CAS  PubMed  Google Scholar 

  • Sures B, Taraschewski H, Haug C (1995) Determination of trace metals (Cd, Pb) in fish by electrothermal atomic absorption spectrometry after microwave digestion. Anal Chim Acta 311:395–399

    Article  Google Scholar 

  • Sures B, Taraschewski H, Rokicki J (1997) Lead and cadmium content of two cestodes Monobothrium wageneri, and Bothriocephalus scorpii, and their fish hosts. Parasitol Res 83:618–623

    Article  CAS  PubMed  Google Scholar 

  • Sures B, Steiner W, Rydlo M, Taraschewski H (1999a) Concentrations of 17 elements in the zebra mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpin lake Mondsee (Austria). Environ Toxicol Chem 18:2574–2579

    CAS  Google Scholar 

  • Sures B, Siddall R, Taraschewski H (1999b) Parasites as accumulation indicators of heavy metal pollution. Parasitol Today 15:16–21

    Article  CAS  PubMed  Google Scholar 

  • Thielen F, Zimmermann S, Baska F, Taraschewski H, Sures B (2003) Pomphorhynchus laevis as a bioindicator for metal pollution under field conditions: analyses of 21 elements in the parasites as compared with different tissues of its host barbel (Barbus barbus) caught in the Danube River near Budapest, Hungary. Environ Pollut (in press)

    Google Scholar 

  • Viarengo A, Canesi L, Mazzucotelli A, Ponzono E (1993) Cu, Zn and Cd content in different tissues of the Antarctic scallop Adamussium colbecki: role of metallothionein in heavy metal homoeostasis and detoxication. Mar Ecol Prog Ser 95:163–168

    CAS  Google Scholar 

  • Vodopivez C, Curtosi A (1998) Trace metals in some invertebrates, fishes and birds from Potter Cove. In: Wiencke C, Ferreyra G, Arntz W, Rinaldi C (eds) The Potter Cove coastal ecosystem, Antarctica. Rep Polar Res 299:296–303

    Google Scholar 

  • Wood CM, Hogstrand C, Galvez F (1996) The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 35:93–109

    CAS  Google Scholar 

  • Zauke GP, Petri G (1993) Metal concentrations in Antarctic Crustacea: the problem of background levels. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. Lewis, Boca Raton, pp 73–101

  • Zauke GP, Von Lemm R, Meurs HG, Butte W (1995) Validation of estuarine gammarid collectives (Amphipoda: Crustacea) as biomonitors for cadmium in semi-controlled toxicokinetic flow-through experiments. Environ Pollut 90:209–219

    Article  CAS  Google Scholar 

  • Zdzitowiecki K (1991) Antarctic Acanthocephala. In: Wägele J-W, Sieg J (eds) Synopses of the Antarctic benthos. Koenigstein Koeltz, p 116

  • Zimmermann S, Sures B, Taraschewski H (1999) Experimental studies on lead accumulation in the eel specific endoparasites Anguillicola crassus (Nematoda) and Paratenuisentis ambiguus (Acanthocephala) as compared with their host, Anguilla anguilla. Arch Environ Contam Toxicol 37:190–195

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann S, Alt F, Messerschmidt J, Bohlen A von, Taraschewski H, Sures B (2002) Biological availability of traffic related platinum group elements (palladium, platinum, and rhodium) and other metals to the zebra mussel (Dreissena polymorpha) in water containing road dust. Environ Toxicol Chem 21:2713–2718

    PubMed  Google Scholar 

Download references

Acknowledgements

Parts of this research were financially supported by grants from the German Research Council (DFG SP 377/7). Thanks are also due to W. Steiner, UMEG (Zentrum für Umweltmessungen, Umwelterhebungen und Gerätesicherheit, Karlsruhe, Germany) for providing the PQ ExCell ICP-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Sures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sures, B., Reimann, N. Analysis of trace metals in the Antarctic host-parasite system Notothenia coriiceps and Aspersentis megarhynchus (Acanthocephala) caught at King George Island, South Shetland Islands. Polar Biol 26, 680–686 (2003). https://doi.org/10.1007/s00300-003-0538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-003-0538-4

Keywords

Navigation