Skip to main content

Advertisement

Log in

DNA methylation dynamics in response to abiotic and pathogen stress in plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

DNA methylation is a dynamic epigenetic mechanism that plays a significant role in gene expression and also maintains chromatin stability. The process is conserved in both plants and animals, and crucial for development and stress responses. Differential DNA methylation during adverse environmental conditions or pathogen attack facilitates the selective expression of defense-related genes. Both stress-induced DNA hypomethylation and hypermethylation play beneficial roles in activating the defense response. These DNA marks may be carried to the next generation making the progenies ‘primed’ for abiotic and biotic stress responses. Over the recent years, rapid advancements in the area of high throughput sequencing have enabled the detection of methylation status at genome levels in several plant species. Epigenotyping offers an alternative tool to plant breeders in addition to conventional markers for the selection of the desired offspring. In this review, we briefly discuss the mechanism of DNA methylation, recent understanding of DNA methylation-mediated gene regulation during abiotic and biotic stress responses, and stress memory in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agorio A, Vera P (2007) ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell 19:3778–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akimoto K, Katakami H, Kim HJ, Kim HJ, Ogawa E, Sano CM, Wada Y, Sano H (2007) Epigenetic inheritance in rice plants. Ann Bot 100:205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashapkin VV, Kutueva LI, Aleksandrushkina NI, Vanyushin BF (2020) Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses. Int J Mol Sci 20:7457

    Article  CAS  Google Scholar 

  • Atighi MR, Verstraeten B, De Meyer T, Kyndt T (2020) Genome-wide DNA hypomethylation shapes nematode pattern-triggered immunity in plants. New Phytol 227:545–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Kumar Kushwaha N, Kumar Singh A, Pankaj Sahu P, Vinoth Kumar R, Chakraborty S (2018) Dynamics of a geminivirus-encoded pre-coat protein and host RNA-dependent RNA polymerase 1 in regulating symptom recovery in tobacco. J Exp Bot 69:2085–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant 8:521–539

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJ, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RG, Bai Y, Kormelink R (2014) Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci USA 111:12942–12947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambiagno DA, Nota F, Zavallo D, Rius S, Casati P, Asurmendi S, Alvarez ME (2018) Immune receptor genes and pericentromeric transposons as targets of common epigenetic regulatory elements. Plant J 96:1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Cambiagno DA, Torres JR, Alvarez ME (2021) Convergent epigenetic mechanisms avoid constitutive expression of immune receptor gene subsets. Front Plant Sci 12:703667

    Article  PubMed  PubMed Central  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2005) MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci USA 102:10381–10386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZQ, Zhao JH, Chen Q, Zhang ZH, Li J, Guo ZX, Xie Q, Ding SW, Guo HS (2020) DNA geminivirus infection induces an imprinted E3 ligase gene to epigenetically activate viral gene transcription. Plant Cell 32:3256–3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coursey T, Regedanz E, Bisaro DM (2018) Arabidopsis RNA polymerase V mediates enhanced compaction and silencing of geminivirus and transposon chromatin during host recovery from infection. J Virol 92:e01320

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva MF, Gonçalves MC, Brito MDS, Medeiros CN, Harakava R, Landell MGA, Pinto LR (2020) Sugarcane mosaic virus mediated changes in cytosine methylation pattern and differentially transcribed fragments in resistance-contrasting sugarcane genotypes. PLoS ONE 15:e0241493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962–965

    Article  CAS  PubMed  Google Scholar 

  • Deuschle K, Kepp G, Jeske H (2016) Differential methylation of the circular DNA in geminiviral minichromosomes. Virology 499:243–258

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat Commun 3:1–9

    Google Scholar 

  • Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13:1–11

    Article  CAS  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:2183–2191

    Article  Google Scholar 

  • Gao G, Li J, Li H et al (2014) Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed Sci 64:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng S, Kong X, Song G, Jia M, Guan J, Wang F, Qin Z, Wu L, Lan X, Li A (2019) DNA methylation dynamics during the interaction of wheat progenitor Aegilops tauschii with the obligate biotrophic fungus Blumeria graminis f. sp. tritici. New Phytol 221:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Gohlke J, Scholz CJ, Kneitz S, Weber D, Fuchs J, Hedrich R, Deeken R (2013) DNA methylation mediated control of gene expression is critical for development of crown gall tumors. PLoS Genet 9:e1003267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halter T, Wang J, Amesefe D et al (2021) The Arabidopsis active demethylase ros1 cis-regulates defense genes by erasing dna methylation at promoter-regulatory regions. Elife 10:1–62

    Article  Google Scholar 

  • He Y, Li Z (2018) Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming. Trends Genet 34:856–866

    Article  CAS  PubMed  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    Article  CAS  PubMed  Google Scholar 

  • Herman JJ, Sultan SE (2016) DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc Biol Sci 283:20160988

    PubMed  PubMed Central  Google Scholar 

  • Ismayil A, Haxim Y, Wang Y, Li H, Qian L, Han T, Chen T, Jia Q, Yihao Liu A, Zhu S, Deng H, Gorovits R, Hong Y, Hanley-Bowdoin L, Liu Y (2018) Cotton Leaf Curl Multan virus C4 protein suppresses both transcriptional and post-transcriptional gene silencing by interacting with SAM synthetase. PLoS Pathog 14:e1007282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin Y, Zhao JH, Guo HS (2021) Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Curr Opin Virol 46:65–72

    Article  CAS  PubMed  Google Scholar 

  • Lacatus G, Sunter G (2008) Functional analysis of bipartite begomovirus coat protein promoter sequences. Virology 376:79–89

    Article  CAS  PubMed  Google Scholar 

  • Lafon-Placette C, Le Gac AL, Chauveau D et al (2018) Changes in the epigenome and transcriptome of the poplar shoot apical meristem in response to water availability affect preferentially hormone pathways. J Exp Bot 69:537–551

    Article  CAS  PubMed  Google Scholar 

  • Lamelas L, Valledor L, Escandón M, Pinto G, Cañal MJ, Meijón M (2020) Integrative analysis of the nuclear proteome in Pinus radiata reveals thermopriming coupled to epigenetic regulation. J Exp Bot 71:2040–2057

    Article  CAS  PubMed  Google Scholar 

  • Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18:1–11

    Article  CAS  Google Scholar 

  • Le TN, Schumann U, Smith NA, Tiwari S, Au PC, Zhu QH, Taylor JM, Kazan K, Llewellyn DJ, Zhang R, Dennis ES, Wang MB (2014) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol 15:1–18

    Article  CAS  Google Scholar 

  • Lewseya MG, Hardcastlec TJ, Melnykc CW, Molnarc A, Vallic A, Uricha MA, Nery JR, Baulcombe DC, Ecker JR (2015) Mobile small RNAs regulate genome-wide DNA methylation. Proc Natl Acade Sci USA 113:801–810

    Google Scholar 

  • Li G, Zhu P (2015) Structure and organization of chromatin fiber in the nucleus. FEBS Lett 589:2893–2904

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xia Q, Kou H, Wang D, Lin X, Wu Y, Xu C, Xing S, Liu B (2011) Induced Pib expression and resistance to Magnaporthe grisea are compromised by cytosine demethylation at critical promoter regions in rice. J Integr Plant Biol 53:814–823

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Du Z, Tang Y, She X, Wang X, Zhu Y, Yu L, Lan G, He Z (2020) C4, the pathogenic determinant of tomato leaf curl Guangdong virus, may suppress post-transcriptional gene silencing by interacting with BAM1 protein. Front Microbiol 11:851

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Ding Y, Fromm M, Avramova Z (2014) Different gene-specific mechanisms determine the ‘revised-response’ memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucleic Acids Res 9:5556–5566

    Article  CAS  Google Scholar 

  • Liu H, Able AJ, Able JA (2021a) Priming crops for the future: rewiring stress memory. Trends Plant Sci 11:1360–1385

    Google Scholar 

  • Liu S, de Jonge J, Trejo-Arellano MS, Santos-González J, Köhler C, Hennig L (2021b) Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. New Phytol 229:2238–2250

    Article  CAS  PubMed  Google Scholar 

  • López A, Ramírez V, García-Andrade J, Flors V, Vera P (2011) The RNA silencing enzyme RNA polymerase V is required for plant immunity. PLoS Genet 7:e1002434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853

    Article  CAS  PubMed  Google Scholar 

  • Mei Y, Wang Y, Li F, Zhou X (2020) The C4 protein encoded by tomato leaf curl Yunnan virus reverses transcriptional gene silencing by interacting with NbDRM2 and impairing its DNA-binding ability. PLoS Pathog 16:e1008829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omae N, Suzuki M, Ugaki M (2020) The genome of the Cauliflower mosaic virus a plant pararetrovirus is highly methylated in the nucleus. FEBS Lett 594:1974–1988

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, Roldán-Arjona T (2008) Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol Biol 67:671–681

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Yadav CB, Sahu PP, Muthamilarasan M, Prasad M (2017) Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.). Plant Cell Rep 36:759–772

    Article  CAS  PubMed  Google Scholar 

  • Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol Plant Microb Interact 19:577–587

    Article  CAS  Google Scholar 

  • Penterman J, Zilberman D, Huh JH, Ballinger T, Henikoff S, Fischer RL (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA 104:6752–6757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piedra-Aguilera Á, Jiao C, Luna AP, Villanueva F, Dabad M, Esteve-Codina A, Díaz-Pendón JA, Fei Z, Bejarano ER, Castillo AG (2019) Integrated single-base resolution maps of transcriptome sRNAome and methylome of Tomato yellow leaf curl virus (TYLCV) in tomato. Sci Rep 9:1–6

    Article  CAS  Google Scholar 

  • Prasad A, Sharma N, Muthamilarasan M, Rana S, Prasad M (2019) Recent advances in small RNA mediated plant-virus interactions. Crit Rev Biotechnol 39:587–601

    Article  CAS  PubMed  Google Scholar 

  • Prasad A, Sharma N, Hari-Gowthem G, Muthamilarasan M, Prasad M (2020) Tomato yellow leaf curl virus: impact, challenges, and management. Trends Plant Sci 25:897–911

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Hu W, Liao J, Zhang J, Ren Q (2019) The dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Biochem Biophys Res Commun 512:742–749

    Article  CAS  PubMed  Google Scholar 

  • Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008) Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82:8997–9007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja P, Jackel JN, Li S, Heard IM, Bisaro DM (2014) Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses. J Virol 88:2611–2622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajkumar MS, Shankar R, Garg R, Jain M (2020) Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics 112:3537–3548

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Gandarilla MG, Rodríguez-Negrete EA, Rivera-Bustamante RF (2020) Superinfection by PHYVV alters the recovery process in PepGMV-infected pepper plants. Viruses 12:286

    Article  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Negrete E, Lozano-Durán R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG (2013) Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol 199:464–475

    Article  PubMed  CAS  Google Scholar 

  • Sahu PP, Sharma N, Puranik S, Prasad M (2014) Post-transcriptional and epigenetic arms of RNA silencing: a defense machinery of naturally tolerant tomato plant against tomato leaf curl new Delhi virus. Plant Mol Biol Rep 32:1015

    Article  CAS  Google Scholar 

  • Sallam N, Moussa M (2021) DNA methylation changes stimulated by drought stress in ABA-deficient maize mutant vp10. Plant Physiol Biochem 160:218–224

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Prasad M (2020) Silencing AC1 of Tomato leaf curl virus using artificial microRNA confers resistance to leaf curl disease in transgenic tomato. Plant Cell Rep 39:1565–1579

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Sahu PP, Puranik S, Prasad M (2013) Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs). Mol Biotechnol 55:63–77

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Sahu PP, Kulshreshtha R, Prasad M (2018) Surfacing the role of epigenetics in host-virus interaction. In: Patil BL (ed) Genes, genetics and transgenics for virus resistance in plants. Caister Academic Press, Norfolk, pp 55–86

    Google Scholar 

  • Sharrock J, Sun JC (2020) Innate immunological memory: from plants to animals. Curr Opin Immunol 62:69–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheteiwy MS, An J, Yin M, Jia X, Guan Y, He F, Hu J (2019) Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma 256:79–99

    Article  CAS  PubMed  Google Scholar 

  • Singh A (2021) Soil salinization management for sustainable development: a review. J Environ Manag 277:111383

    Article  CAS  Google Scholar 

  • Singh RK, Prasad M (2021) Delineating the epigenetic regulation of heat and drought response in plants. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2021.1946004

    Article  PubMed  Google Scholar 

  • Singh RK, Jaishankar J, Muthamilarasan M, Shweta S, Dangi A, Prasad M (2016) Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci Rep 6:32641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Prasad A, Maurya J, Prasad M (2021) Regulation of small RNA-mediated high temperature stress responses in crop plants. Plant Cell Rep. https://doi.org/10.1007/s00299-021-02745-x

    Article  PubMed  Google Scholar 

  • Song Y, Jia Z, Hou Y, Ma X, Li L, Jin X, An L (2020) Roles of DNA methylation in cold priming in Tartary buckwheat. Front Plant Sci 2020:2022

    Google Scholar 

  • Stassen JHM, López A, Jain R, Pascual-Pardo D, Luna E, Smith LM, Ton J (2018) The relationship between transgenerational acquired resistance and global DNA methylation in Arabidopsis. Sci Rep 8:14761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Fan M, He Y (2019) DNA methylation analysis of the Citrullus lanatus response to cucumber green mottle mosaic virus infection by whole-genome bisulfite sequencing. Genes (basel) 10:344

    Article  CAS  Google Scholar 

  • Tirnaz S, Batley J (2019) DNA methylation: toward crop disease resistance improvement. Trends Plant Sci 24:1137–1150

    Article  CAS  PubMed  Google Scholar 

  • Tollefson J (2020) How hot will earth get by 2100? Nature 580:443–445

    Article  CAS  PubMed  Google Scholar 

  • Torchetti EM, Pegoraro M, Navarro B, Catoni M, Di Serio F, Noris E (2016) A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA. Sci Rep 6:35101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakley E, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu YC, Tsai WS, Wei JY, Chang KY, Tien CC, Hsiao HY, Fu SF (2017) The C2 protein of tomato leaf curl Taiwan virus is a pathogenicity determinant that interferes with expression of host genes encoding chromomethylases. Physiol Plant 161:515–531

    Article  CAS  PubMed  Google Scholar 

  • Urrea Castellanos R, Friedrich T, Petrovic N (2020) FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. Plant J 104:7–17

    Article  CAS  PubMed  Google Scholar 

  • Ventouris YE, Tani E, Avramidou EV, Abraham EM, Chorianopoulou SN, Vlachostergios DN, Papadopoulos G, Kapazoglou A (2020) Recurrent water deficit and epigenetic memory in Medicago sativa L. Varieties Applied Sciences 10:3110

    Article  CAS  Google Scholar 

  • Villagómez-Aranda AL, Feregrino-Pérez AA, García-Ortega LF, González-Chavira MM, Torres-Pacheco I, Guevara-González RG (2022) Activating stress memory: eustressors as potential tools for plant breeding. Plant Cell Rep 19:1–8

    Google Scholar 

  • Vinutha T, Kumar G, Garg V, Canto T, Palukaitis P, Ramesh SV, Praveen S (2018) Tomato geminivirus encoded RNAi suppressor protein AC4 interacts with host AGO4 and precludes viral DNA methylation. Gene 678:184–195

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, An C, Zhang X, Yao J, Zhang Y, Sun Y, Yu F, Amador DM, Mou Z (2013) The Arabidopsis elongator complex subunit2epigenetically regulates plant immune responses. Plant Cell 25:762–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Li F, Huang C, Yang X, Qian Y, Xie Y, Zhou X (2014) V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. J Gen Virol 95:225–230

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yang X, Wang Y, Xie Y, Zhou X (2018a) Tomato yellow leaf curl virus V2 Interacts with host histone deacetylase 6 to suppress methylation-mediated transcriptional gene silencing in plants. J Virol 92:e00036-e118

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang C, Xu W, Zou J, Qiu Y, Kong J, Yang Y, Zhang B, Zhu S (2018b) Epigenetic changes in the regulation of Nicotiana tabacum response to cucumber mosaic virus infection and symptom recovery through single-base resolution methylomes. Viruses 10:402

    Article  PubMed Central  CAS  Google Scholar 

  • Wang C, Wang C, Zou J, Yang Y, Li Z, Zhu S (2019) Epigenetics in the plant-virus interaction. Plant Cell Rep 38:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ding Y, He L, Zhang G, Zhu JK, Lozano-Duran R (2020) A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. Elife 9:e55542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Cao S, Wang P, Lu K, Song Q, Zhao FJ, Chen ZJ (2021) DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proc Natl Acad Sci USA 118:e2023981118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo HR, Dittmer TA, Richards EJ (2008) Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. PLoS Genet 4:e1000156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Yu B (2015) siRNA-directed DNA methylation in plants. Curr Genomics 16:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RK, Chattopadhyay D (2011) Enhanced viral intergenic region specific siRNA accumulation and DNA methylation correlates with resistance against a geminivirus. Mol Plant Microbe Interact 24:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Xie Y, Raja P, Li S, Wolf JN, Shen Q, Bisaro DM, Zhou X (2011) Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog 7:e1002329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LP, Fang YY, An CP, Dong L, Zhang ZH, Chen H, Xie Q, Guo HS (2013) C2-mediated decrease in DNA methylation accumulation of siRNAs and increase in expression for genes involved in defense pathways in plants infected with beet severe curly top virus. Plant J 73:910–917

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Xu Y, Liu Y, Meng D, Jin T, Zhou X (2016) HC-Pro viral suppressor from tobacco vein banding mosaic virus interferes with DNA methylation and activates the salicylic acid pathway. Virology 497:244–250

    Article  CAS  PubMed  Google Scholar 

  • Yu A, Lepère G, Jay F, Wang J, Bapaume L, Wang Y, Abraham AL, Penterman J, Fischer RL, Voinnet O, Navarro L (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci USA 110:2389–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Ngou BPM, Ding P, Xin XF (2021) PTI-ETI crosstalk: an integrative view of plant immunity. Curr Opin Plant Biol 62:102030

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12

    Article  CAS  PubMed  Google Scholar 

  • Zarreen F, Chakraborty S (2020) Epigenetic regulation of geminivirus pathogenesis: a case of relentless recalibration of defence responses in plants. J Exp Bot 71:6890–6906

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, Teng K, Li Y, Liang L, Du Q, Zhou X, Guo H, Xie Q (2011) BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23:273–288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Tao Z, Hong H, Chen Z, Wu C, Li X, Xiao J, Wang S (2016) Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nat Plants 2:16016

    Article  CAS  PubMed  Google Scholar 

  • Zhi P, Chang C (2021) Exploiting epigenetic variations for crop disease resistance improvement. Front Plant Sci 12:692328

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors’ work in this area is supported by J.C. Bose National Fellowship Grant of Science and Engineering Research Board, Govt. of India (File No.: JCB/2018/000001). RKS acknowledges the DBT Multi-institutional project entitled- “Germplasm Characterization and Trait Discovery in Wheat using Genomics Approaches and its Integration for Improving Climate Resilience, Productivity and Nutritional quality" under the mission programme of "Characterisation of Genetic Resources”, [BT/Ag/Network/Wheat/2019-20] for the research grant. NS acknowledges Science and Engineering Research Board Women Excellence Award (WEA/2020/000004) for the research grant. The authors are thankful to DBT-eLibrary Consortium (DeLCON) for providing access to the e-resources. All the images were created using Biorender.com.

Funding

Authors’ work in this area is supported by research grants from Ministry of Science and Technology, Gov. of India (JCB/2018/000001 and BT/Ag/Network/Wheat/2019-20).

Author information

Authors and Affiliations

Authors

Contributions

MP conceived the idea; HA, RKS, SS, NS, AP, TD, AP prepared the manuscript, RKS and MP revised the manuscript.

Corresponding author

Correspondence to Manoj Prasad.

Ethics declarations

Competing Interests

Dr. Manoj Prasad is one of the editors of this journal and all other authors declare that they have no conflict of interest.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, H., Singh, R.K., Sharma, S. et al. DNA methylation dynamics in response to abiotic and pathogen stress in plants. Plant Cell Rep 41, 1931–1944 (2022). https://doi.org/10.1007/s00299-022-02901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02901-x

Keywords

Navigation