Skip to main content
Log in

Glycinebetaine: a versatile protectant to improve rice performance against aluminium stress by regulating aluminium uptake and translocation

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Glycinebetaine alleviates the detrimental effects of aluminium stress by regulating aluminium uptake and translocation, maintaining PSII activity, and activating the oxidative defence, thereby maintaining the growth and development of rice.

Abstract

Aluminium (Al) toxicity is one of the primary growth-limiting factors that limits plant growth and crop productivity in acidic soils. Rice (Oryza sativa L.) plants are susceptible to Al stress and do not naturally accumulate glycinebetaine (GB), one of the most effective protectants. Therefore, the objective of this study was to investigate whether exogenous GB can ameliorate the detrimental effects of Al stress on rice plants. Our results showed that the growth, development and biomass of rice were clearly inhibited under Al stress. However, exogenous GB application increased rice shoot growth and photosynthetic pigments contents, maintained photosystem II (PSII) activity, and activated the antioxidant defence system under Al stress. More importantly, GB may mediate the expression of Al uptake- and translocation-related genes, including OsALS1, OsNrat1, OsSTAR1 and OsSTAR2, and the galacturonic acid contents in rice roots under Al stress. Therefore, our findings highlight exogenous GB application is a valid approach to effectively combat Al toxicity by regulating physiological and biochemical processes in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad R, Ali S, Abid M, Rizwan M, Ali B, Tanveer A, Ahmad I, Azam M, Ghani MA (2020) Glycinebetaine alleviates the chromium toxicity in Brassica oleracea L. by suppressing oxidative stress and modulating the plant morphology and photosynthetic attributes. Environ Sci Pollut R 27(1):1101–1111

    Article  CAS  Google Scholar 

  • Ali S, Chaudhary A, Rizwan M, Anwar HT, Adrees M, Farid M, Anjum IMK, SA, (2015) Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ Sci Pollut R 22(14):10669–10678

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bharwana SA, Ali S, Farooq MA, Iqbal N, Hameed A, Abbas F, Ahmad MS (2014) Glycine betaine–induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turk J Bot 38(2):281–292

    Article  CAS  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) An improved method for the assay of hydroxylysine. Anal Biochem 56:10–15

    Article  CAS  PubMed  Google Scholar 

  • Bradford MMA (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viegas RA, Silveira JAG (2004) Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt stressed cowpea leaves. New Phytol 163:563–571

    Article  CAS  PubMed  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  CAS  PubMed  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  Google Scholar 

  • Derks AK, Bruce D (2018) Rapid regulation of excitation energy in two pennate diatoms from contrasting light climates. Photosynth Res 138(2):149–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derks A, Schaven K, Bruce D (2015) Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim Biophys Acta-Bioenerg 1847:468–485

    Article  CAS  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Duman F, Aksoy A, Aydin Z, Temizgul R (2011) Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water Air Soil Poll 217:545–556

    Article  CAS  Google Scholar 

  • Einset J, Nielsen E, Connolly EL, Bones A, Sparstad T, Winge P, Zhu JK (2007) Membrane–trafficking RabA4c involved in the effect of glycine betaine on recovery from chilling stress in Arabidopsis. Physiol Plant 130:511–518

    Article  CAS  Google Scholar 

  • Geng X, Horst WJ, Golz JF, Lee JE, Ding Z, Yang ZB (2017) Leunig_homolog transcriptional co-repressor mediates aluminium sensitivity through pectin methylesterase46–modulated root cell wall pectin methylesterification in Arabidopsis. Plant J 90(3):491–504

    Article  CAS  PubMed  Google Scholar 

  • Gobinathan P, Murali PV, Panneerselvam R (2009) Interactive effects of calcium chloride on salinity-induced proline metabolism in Pennisetum typoidies. Bot Res Intl 3:168–173

    CAS  Google Scholar 

  • Gong ZZ, Xiong LM, Shi HZ, Yang SH, Herrera-Estrella LR, Xu GH, Chao DY, Li JR, Wang PY, Guo Y, Zhu JK (2020) Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63(5):635–674

    Article  PubMed  Google Scholar 

  • Hasanuzzaman M, Banerjee A, Bhuyan MHMB, Roychoudhury A, Fujita M (2019) Targeting glycinebetaine for abiotic stress tolerance in crop plants: physiological mechanism, molecular interaction and signaling. Phyton 88:185–221

    Article  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Pla 16:259–272

    Article  CAS  Google Scholar 

  • Hu L, Hu T, Zhang X, Pang H, Fu J (2012) Exogenous glycinebetaine ameliorates the adverse effect of salt stress on perennial ryegrass. J Am Soc Hortic Sci 137:38–46

    Article  CAS  Google Scholar 

  • Huang CF, Yamaji N, Chen Z, Ma JF (2012) A tonoplast–localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J 69:857–867

    Article  CAS  PubMed  Google Scholar 

  • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Zuo T, Ni W (2020) Important roles of glycinebetaine in stabilizing the structure and function of the photosystem II complex under abiotic stresses. Planta 251:36

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Johnson GN (2011) Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA 108(32):13317–13322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Gilroy S, Larsen PB, Howell SH, Kochian LV (1998a) Effect of aluminum on cytoplasmic Ca2+ homeostasis in root hairs of Arabidopsis thaliana (L.). Planta 206:378–387

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Kochian LV, Gilroy S (1998b) Aluminum induces a decrease in cytosolic [Ca2+] in BY-2 tobacco cell cultures. Plant Physiol 116:81–89

    Article  CAS  PubMed Central  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598

    Article  CAS  PubMed  Google Scholar 

  • Konarska A (2010) Effects of aluminum on growth and structure of red pepper (Capsicum annuum L.) leaves. Acta Physiol Plant 32:145–151

    Article  CAS  Google Scholar 

  • Kumar V, Shriram V, Hoque TS, Hasan MM, Burritt DJ, Hossain MA (2017) Glycinebetaine-mediated abiotic oxidative-stress tolerance in plants: physiological and biochemical mechanisms. Stress signaling in plants: genomics and proteomics perspective, vol 2. Springer, Cham, pp 111–133

    Chapter  Google Scholar 

  • Li MF, Guo SJ, Xu Y, Meng QW, Li G, Yang XH (2014a) Glycine betaine-mediated potentiation of HSP gene expression involved calcium signaling pathways in tobacco exposed to NaCl stress. Physiol Plantarum 150:63–75

    Article  CAS  Google Scholar 

  • Li MF, Li ZM, Li SF, Guo SJ, Meng QW, Li G, Yang XH (2014b) Genetic engineering of glycinebetaine biosynthesis reduces the heat-enhanced photoinhibition by enhancing antioxidative defense and alleviating lipid peroxidation in tomato. Plant Mol Biol Rep 32:42–51

    Article  CAS  Google Scholar 

  • Li SF, Li F, Wang JW, Zhang W, Meng QW, Chen THH, Murata N, Yang XH (2011) Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant Cell Environ 34:1931–1943

    Article  CAS  PubMed  Google Scholar 

  • Li DX, Zhang TP, Wang MW, Liu Y, Brestic M, Chen THH, Yang XH (2019) Genetic engineering of the biosynthesis of glycine betaine modulates phosphate homeostasis by regulating phosphate acquisition in tomato. Front Plant Sci 9:1995

    Article  PubMed  PubMed Central  Google Scholar 

  • Lou HQ, Fan W, Jin JF, Xu JM, Chen WW, Yang JL, Zheng SJ (2020) A NAC-type transcription factor confers aluminum resistance by regulating cell wall-associated receptor kinase 1 and cell wall pectin. Plant Cell Environ 43(2):463–478

    Article  CAS  PubMed  Google Scholar 

  • Lou Y, Yang Y, Hy L, Liu H, Xu Q (2015) Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass. Ecotoxicology 24:1330–1340

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Patra HK, Kar M, Mishra D (1978) Catalase activity in leaves and cotyledons during plant development and senescence. Biochem Physiol Pflanz 172:385–390

    Article  CAS  Google Scholar 

  • Pfündel E, Klughammer C, Schreiber U (2008) Monitoring the effects of reduced PSII antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. PAM Appl Note 1:21–24

    Google Scholar 

  • Rauckman EJ, Rosen GM, Kitchell BB (1979) Superoxide radical as an intermediate in the oxidation of hydroxylamines by mixed function amine oxidase. Mol Pharmacol 15:131–137

    CAS  PubMed  Google Scholar 

  • Rengel Z, Zhang WH (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295–314

    Article  CAS  PubMed  Google Scholar 

  • Sade H, Meriga B, Surapu V, Gadi J, Sunita MS, Suravajhala P, Kavi Kishor PB (2016) Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals 29:187–210

    Article  CAS  PubMed  Google Scholar 

  • Sasi S, Venkatesh J, Daneshi RF, Gururani MA (2018) Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants-Basel 7(4):100

    Article  CAS  PubMed Central  Google Scholar 

  • Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN (1985) Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol 121:453–461

    Article  CAS  Google Scholar 

  • Wei DD, Zhang W, Wang CC, Meng QW, Li G, Chen THH, Yang XH (2017) Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt–induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci 257:74–83

    Article  CAS  PubMed  Google Scholar 

  • Wellburn AL (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids using various solvents with spectrophotometers of different resolutions. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. P Natl Acad Sci USA 107:18381–18385

    Article  CAS  Google Scholar 

  • Yamamoto Y (2019) Aluminum toxicity in plant cells: Mechanisms of cell death and inhibition of cell elongation. Soil Sci Plant Nutr 65(1):41–55

    Article  CAS  Google Scholar 

  • Yang XH, Lu CM (2005) Photosynthesis is improved by exogenous glycinebetaine in salt–stressed maize plants. Physiol Plantarum 124:343–352

    Article  CAS  Google Scholar 

  • Yang Z, He C, Ma Y, Herde M, Ding Z (2017) Jasmonic acid enhances Al–induced root growth inhibition. Plant Physiol 173(2):1420–1433

    Article  CAS  PubMed  Google Scholar 

  • Zasoski RJ, Burau RG (1977) A rapid nitric–perchloric acid digestion method for multi–element tissue analysis. Commun Soil Sci Plant Anal 8(5):425–436

    Article  CAS  Google Scholar 

  • Zhang M, Lu X, Li C, Zhang B, Zhang C, Zhang XS, Ding Z (2018) Auxin efflux carrier ZmPGP1 mediates root growth inhibition under aluminum stress. Plant Physiol 177(2):819–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang TP, Liang JN, Wang MW, Li DX, Liu Y, Chen THH, Yang XH (2019) Genetic engineering of the biosynthesis of glycine betaine enhances the fruit development and size of tomato. Plant Sci 280:355–366

    Article  CAS  PubMed  Google Scholar 

  • Zhang TP, Yang XH (2019) Exogenous glycinebetaine-mediated modulation of abiotic stress tolerance in plants: possible mechanisms. In: Hossain M, Kumar V, Burritt D, Fujita M, Mäkelä P (eds) Osmoprotectant-mediated abiotic stress tolerance in plants. Springer, Cham, pp 141–152

    Chapter  Google Scholar 

  • Zhao XX, Ma QQ, Liang C, Fang Y, Wang YQ, Wang W (2007) Effect of glycinebetaine on function of thylakoid membranes in wheat flag leaves under drought stress. Biol Plant 51:584–588

    Article  CAS  Google Scholar 

  • Zhong H, Lauchli A (1993) Changes of cell wall composition and polymer size in primary roots of cotton seedlings under high salinity. J Exp Bot 44:773–778

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulfiqar F, Akram NA, Ashraf M (2020) Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta 251(1):3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the National Natural Science Foundation of China (31870216, 31470341) and the project EPPN2020-OPVaI-VA - ITMS313011T813 and VEGA 1/0589/19.

Author information

Authors and Affiliations

Authors

Contributions

XY and MB conceived and supervised the project, and XY, YL and TZ designed the experiments. TZ, WZ and DL performed most of the experiments. FZ, XC, CL and SY performed some of the experiments. TZ, WZ and XY analysed data and wrote the manuscript. MB and YL gave positive suggestion about this article. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Yang Liu or Xinghong Yang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by Chun-Hai Dong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, W., Li, D. et al. Glycinebetaine: a versatile protectant to improve rice performance against aluminium stress by regulating aluminium uptake and translocation. Plant Cell Rep 40, 2397–2407 (2021). https://doi.org/10.1007/s00299-021-02780-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02780-8

Keywords

Navigation