Skip to main content
Log in

SQUAMOSA promoter-binding protein-like 7 mediates copper deficiency response in the presence of high nitrogen in Arabidopsis thaliana

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

SQUAMOSA promoter-binding protein-like 7 mediates copper deficiency response in the presence of high nitrogen even with the sufficient level of copper in Arabidopsis thaliana.

Abstract

Under copper (Cu) deficiency, accumulation of mRNA encoding two Cu/Zn superoxide dismutases, CSD1 and CSD2, is downregulated to save Cu for plastocyanin. This downregulation depends on miR398 and is under the control of SQUAMOSA promoter-binding protein-like7 (SPL7). Arabidopsis seedlings are routinely cultured on Murashige and Skoog medium. However, the high nitrogen (N) content of the medium (60 mM) has been shown to induce a similar response to Cu deficiency. The mRNA and protein levels of CSD1 and CSD2 are reduced under high N conditions, even if the Cu concentration in the medium is sufficient (0.1–0.5 µM). In this study, we show that this symptom, similar to the Cu deficiency, occurred in the presence of high N largely depending on SPL7, suggesting that plants actually sensed Cu deficiency. However, a change in N concentration in the medium did not influence the total Cu concentration in shoots or roots. High N did not increase the protein content in leaves but facilitated rapid seedling growth. We speculate that this rapid growth causes a continuous Cu deficiency mainly because of high Cu uptake by mesophyll cells in the leaves. This idea was supported by the observation that plastocyanin did not overaccumulate at the range of 0.1–0.5 µM Cu with 30 mM N. In contrast, in the presence of 5 µM Cu with 30 mM N, plants accumulate more Cu in plastocyanin in the thylakoid lumen, resulting in a slight Cu deficiency in the chloroplast stroma. This process is independent of SPL7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CRR1:

Copper response regulator 1

Cyt:

Cytochrome

MS:

Murashige and Skoog

PC:

Plastocyanin

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

RT:

Room temperature

SBP:

SQUAMOSA promoter-binding protein

SD:

Standard deviation

SOD:

Superoxide dismutase

SPL7:

SQUAMOSA promoter-binding protein-like 7

WT:

Wild-type

References

  • Abdel-Ghany SE (2009) Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in Arabidopsis thaliana grown at different copper regimes. Planta 229:767–779

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki R, Mermod M, Yamasaki H, Kamiya T, Fujiwara T, Shikanai T (2018) SPL7 locally regulates copper-homeostasis-related genes in Arabidopsis. J Plant Physiol 224–225:137–143

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H et al (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24:738–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugas DV, Bartel B (2008) Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol 67:403–417

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Molina A, Andrés-Colás N, Perea-García A, Neumann U, Dodani SC, Huijser P et al (2013) The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions. Plant Cell Physiol 54:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Molina A, Xing S, Huijser P (2014) Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response. BMC Plant Biol 14:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    Article  CAS  PubMed  Google Scholar 

  • Hippler FWR, Mattos D Jr, Boaretto RM, Williams LE (2018) Copper excess reduces nitrate uptake by Arabidopsis roots with specific effects on gene expression. J Plant Physiol 228:158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L et al (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol 157:1255–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kropat J, Tottey S, Birkenbihl RP, Depège N, Huijser P, Merchant S (2005) A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc Natl Acad Sci USA 102:18730–18735

    Article  CAS  PubMed  Google Scholar 

  • Li H, Hu B, Chu C (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J Exp Bot 68:2477–2488

    Article  CAS  PubMed  Google Scholar 

  • Liang G, He H, Yu D (2012) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 7:e48951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makino A, Sakashita H, Hidema J, Mae T, Ojima K, Osmond B (1992) Distinctive responses of ribulose-1,5-bisphosphate carboxylase and carbonic anhydrase in wheat leaves to nitrogen nutrition and their possible relationships to CO2-transfer resistance. Plant Physiol 100:737–1743

    Article  Google Scholar 

  • Merchant S, Bogorad L (1986) Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Biol Chem 261:15850–15853

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pesaresi P, Scharfenberg M, Weigel M, Granlund I, Schröder WP, Finazzi G et al (2009) Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Mol Plant 2:236–248

    Article  CAS  PubMed  Google Scholar 

  • Puig S, Andrés-Colás N, García-Molina A, Peñarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant, Cell Environ 30:271–290

    Article  CAS  Google Scholar 

  • Ravet K, Pilon M (2013) Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal 19:919–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 15 Apr 2019

  • Ren L, Tang G (2012) Identification of sucrose-responsive microRNAs reveals sucrose-regulated copper accumulations in an SPL7-dependent and independent manner in Arabidopsis thaliana. Plant Sci 187:59–68

    Article  CAS  PubMed  Google Scholar 

  • Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solberg E, Evans L, Penny D (1999) Copper deficiency: diagnosis and correction. http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex3476. Accessed 15 Apr 2019

  • Tapken W, Ravet K, Pilon M (2012) Plastocyanin controls the stabilization of the thylakoid Cu-transporting P-type ATPase PAA2/HMA8 in response to low copper in Arabidopsis. J Biol Chem 287:18544–18550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A et al (2009) Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell Environ 32:300–318

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Zhang S, Yu Y, Luo YC, Liu Q, Ju C et al (2014) MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J 12:1132–1142

    Article  CAS  PubMed  Google Scholar 

  • Weigel M, Varotto C, Pesaresi P, Finazzi G, Rappaport F, Salamini F et al (2003) Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J Biol Chem 278:31286–31289

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Chu Z, Li X, Xu C, Wang S (2010) The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22:3164–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li L (2013) SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis. Plant J 74:98–109

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Lin S, Qiu Z, Cao D, Wen J, Deng X et al (2015) MicroRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis. Plant Physiol 169:2539–2552

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Amane Makino for the antibody. We also thank Dr. Naoyuki Sotta for his advice on the statistical analysis.

Funding

This work was supported by the NC-CARP/GRENE project; the Japan Science and Technology Agency [CREST program to TS]; and the Japanese Society for the Promotion of Science [16H06555 to TS].

Author information

Authors and Affiliations

Authors

Contributions

MM, MT and TS conceived and designed research. MM, MT and TK conducted experiments. TK and TF contributed to the metal analysis. MM and TS wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Toshiharu Shikanai.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interests to declare.

Additional information

Communicated by Manju Gupta.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Increasing N mimics a Cu deficiency response in RNA accumulation. Relative transcript levels of FSD1 (a), CSD1 (b), and CSD2 (c) were determined by qRT-PCR analysis in 3-week old WT shoots cultured on the MS medium without sucrose. Shoots from 5-6 seedlings per condition were pooled for RNA isolation. Three independent biological replicates were analyzed. Transcript levels were normalized to EF1a as a constitutively expressed control gene. Means ± SD, Tukey HSD (p < 0.05). Different alphabets mean statistically significant differences

Table S1

Primers used in this study

Table S2

Summary of regression analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mermod, M., Takusagawa, M., Kurata, T. et al. SQUAMOSA promoter-binding protein-like 7 mediates copper deficiency response in the presence of high nitrogen in Arabidopsis thaliana. Plant Cell Rep 38, 835–846 (2019). https://doi.org/10.1007/s00299-019-02422-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02422-0

Keywords

Navigation