Skip to main content
Log in

Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation.

Abstract

Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40–80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v/F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VIGS:

Virus induced gene silencing

pds:

Phytoene desaturase

Xoo :

Xanthomonas oryzae pv. oryzae

RTBV:

Rice tungro bacilliform virus

RNAi:

RNA interference

MLL:

Mean lesion length

%DLA:

Percentage diseased leaf area

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu RM, Sajeena A, Vidhyasekaran P et al (2003) Differential induction of chitinase and beta-1,3-glucanase in rice in response to inoculation with bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). J Plant Dis Prot 110:105–112

    CAS  Google Scholar 

  • Bachan S, Dinesh-Kumar SP (2012) Tobacco rattle virus (TRV)-based virus-induced gene silencing. Methods Mol Biol 894:83–92

    Article  CAS  PubMed  Google Scholar 

  • Bernacki S, Karimi M, Hilson P, Robertson N (2010) Virus-induced gene silencing as a reverse genetics tool to study gene function. Methods Mol Biol 655:27–45

    Article  CAS  PubMed  Google Scholar 

  • Blevins T, Rajeswaran R, Aregger M et al (2011) Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res 39:5003–5014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding XS, Schneider WL, Chaluvadi SR et al (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interact 19:1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Ellur RK, Khanna A, Yadav A et al (2016) Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci 242:330–341

    Article  CAS  PubMed  Google Scholar 

  • Esparza-Araiza MJ, Bañuelos-Hernández B, Argüello-Astorga GR et al (2015) Evaluation of a SUMO E2 conjugating enzyme involved in resistance to Clavibacter michiganensis subsp. michiganensis in Solanum peruvianum, through a tomato mottle virus VIGS assay. Front Plant Sci 6:1–11

    Article  Google Scholar 

  • Fu DQ, Zhu BZ, Zhu HL et al (2006) Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Mol Cells 21:153–160

    Article  CAS  PubMed  Google Scholar 

  • Godwin I, Todd G, Ford-Lloyd B, Newbury HJ (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Hay JM, Jones MC, Blakebrough ML et al (1991) An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acids Res 19:2615–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Jones HD, Chen S et al (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61:1567–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hein I, Barciszewska-Pacak M, Hrubikova K et al (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138:2155–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiscox JD, Israelstam GF (1980) Erratum: a method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 58:403

    Article  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley strip mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  CAS  PubMed  Google Scholar 

  • Igarashi A, Yamagata K, Sugai T et al (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407–416

    Article  CAS  PubMed  Google Scholar 

  • Kant R, Sharma S, Dasgupta I (2015) Virus-induced gene silencing (VIGS) for functional genomics in rice using rice tungro bacilliform virus (RTBV) as a vector. Plant Gene Silencing Methods Mol Bio 1287:201–217

    CAS  Google Scholar 

  • Lacomme C, Hrubikova K, Hein I (2003) Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J 34:543–553

    Article  CAS  PubMed  Google Scholar 

  • Lee W-S, Hammond-Kosack KE, Kanyuka K (2012) Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein. Plant Physiol 160:582–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liou MR, Huang YW, Hu CC et al (2014) A dual gene-silencing vector system for monocot and dicot plants. Plant Biotechnol J 12:330–343

    Article  CAS  PubMed  Google Scholar 

  • Liu E, Page JE (2008) Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods 4:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Xie K, Jia Q et al (2016) Foxtail mosaic virus-induced gene silencing in monocot plants. Plant Physiol 171:16.00010

    Google Scholar 

  • Lu R (2003) Virus-induced gene silencing in plants. Methods 30:296–303

    Article  CAS  PubMed  Google Scholar 

  • Manfroi E, Yamazaki-Lau E, Grando MF, Roesler EA (2015) Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens. Genet Mol Biol 38:470–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Mei Y, Zhang C, Kernodle BM et al (2016) A foxtail mosaic virus vector for virus-induced gene silencing in maize. Plant Physiol 171:760–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraj S, Senthil-Kumar M, Ramu VS et al (2015) Plant ribosomal proteins, RPL12 and RPL19, play a role in nonhost disease resistance against bacterial pathogens. Front Plant Sci 6:1192

    PubMed  Google Scholar 

  • Nethra P, Nataraja KN, Rama N, Udayakumar M (2006) Standardization of environmental conditions for induction and retention of post-transcriptional gene silencing using tobacco rattle virus vector. Curr Sci 90:431–435

    CAS  Google Scholar 

  • Pacak A, Strozycki PM, Barciszewska-Pacak M et al (2010) The brome mosaic virus-based recombination vector triggers a limited gene silencing response depending on the orientation of the inserted sequence. Arch Virol 155:169–179

    Article  CAS  PubMed  Google Scholar 

  • Purkayastha A, Dasgupta I (2009) Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem 47:967–976

    Article  CAS  PubMed  Google Scholar 

  • Purkayastha A, Mathur S, Verma V et al (2010) Virus-induced gene silencing in rice using a vector derived from a DNA virus. Planta 232:1531–1540

    Article  CAS  PubMed  Google Scholar 

  • Puteh AB, Saragih AA, Ismail MR et al (2013) Chlorophyll fluorescence parameters of cultivated (Oryza sativa L. ssp. indica) and weedy rice (Oryza sativa L. var. nivara) genotypes under water stress. Aust J Crop Sci 7:1277–1283

    Google Scholar 

  • Rajeswaran R, Golyaev V, Seguin J et al (2014) Interactions of rice tungro bacilliform pararetrovirus and its protein P4 with plant RNA silencing machinery. Mol Plant Microbe Interact 27:1370–1378

    Article  PubMed  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Yamagishi N, Yoshikawa N (2011) Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods 7:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway 1. Plant Physiol 138:2165–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Pi LY, Wang GL et al (1997) Evolution of the rice Xa21 disease resistance gene family. Plant Cell 9:1279–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szittya G, Silhavy D, Molnár A et al (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuttle JR, Idris AM, Brown JK et al (2008) Geminivirus-mediated gene silencing from Cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol 148:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unver T, Budak H (2009) Virus-induced gene silencing, A post transcriptional gene silencing method. Int J Plant Genom 2009:198680

    Google Scholar 

  • Van Der Linde K, Kastner C, Kumlehn J et al (2011) Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytol 189:471–483

    Article  PubMed  Google Scholar 

  • Wang J-E, Li D-W, Gong Z-H, Zhang Y-L (2013) Optimization of virus-induced gene silencing in pepper (Capsicum annuum L.). Genet Mol Res 12:2492–2506

    Article  PubMed  Google Scholar 

  • Wang R, Yang X, Wang N et al (2016) An efficient virus-induced gene silencing vector for maize functional genomics research. Plant J 86:102–115

    Article  CAS  PubMed  Google Scholar 

  • Wesley SV, Helliwell C, Smith N et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Qu J, Bui HTN, Chua N-H (2009) Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. Plant Biotechnol J 7:964–976

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Li C, Yan L et al (2011) A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One 6:e26468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li J, Yoo JH et al (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yang C, Whitham S, Hill JH (2009) Development and use of an efficient DNA-based viral gene silencing vector for soybean. Mol Plant Microbe Interact 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Bradshaw JD, Whitham S, Hill JH (2010) The development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiol 153:52–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Teng W, Liang J et al (2016) MADS1, a novel MADS-box protein, is involved in the response of Nicotiana benthamiana to bacterial harpinXoo. J Exp Bot 67:131–141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant of the Department of Biotechnology, Government of India. Grant No. BT/AB/FG-I(PH-II)/2009 to ID. Research fellowship from Indian Council of Medical Research, New Delhi to RK is gratefully acknowledged. ID also acknowledge the financial support from University of Delhi (R&D and DU-DST PURSE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Dasgupta.

Ethics declarations

Ethical standards

The work was performed keeping in mind all applicable ethical standards.

Conflict of interest

The authors declare that no conflicts of interests exist related to any of the authors pertaining to this work.

Additional information

Communicated by Renate Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kant, R., Dasgupta, I. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus. Plant Cell Rep 36, 1159–1170 (2017). https://doi.org/10.1007/s00299-017-2156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2156-6

Keywords

Navigation