Skip to main content
Log in

Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum aestivum L.) and their expression during leaf rust infection

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Key message

NB-ARC domain-containing resistance genes from the wheat genome were identified, characterized and localized on chromosome arms that displayed differential yet positive response during incompatible and compatible leaf rust interactions.

Abstract

Wheat (Triticum aestivum L.) is an important cereal crop; however, its production is affected severely by numerous diseases including rusts. An efficient, cost-effective and ecologically viable approach to control pathogens is through host resistance. In wheat, high numbers of resistance loci are present but only few have been identified and cloned. A comprehensive analysis of the NB-ARC-containing genes in complete wheat genome was accomplished in this study. Complete NB-ARC encoding genes were mined from the Ensembl Plants database to predict 604 NB-ARC containing sequences using the HMM approach. Genome-wide analysis of orthologous clusters in the NB-ARC-containing sequences of wheat and other members of the Poaceae family revealed maximum homology with Oryza sativa indica and Brachypodium distachyon. The identification of overlap between orthologous clusters enabled the elucidation of the function and evolution of resistance proteins. The distributions of the NB-ARC domain-containing sequences were found to be balanced among the three wheat sub-genomes. Wheat chromosome arms 4AL and 7BL had the most NB-ARC domain-containing contigs. The spatio-temporal expression profiling studies exemplified the positive role of these genes in resistant and susceptible wheat plants during incompatible and compatible interaction in response to the leaf rust pathogen Puccinia triticina. Two NB-ARC domain-containing sequences were modelled in silico, cloned and sequenced to analyze their fine structures. The data obtained in this study will augment isolation, characterization and application NB-ARC resistance genes in marker-assisted selection based breeding programs for improving rust resistance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

NB-ARC:

Nucleotide-binding adaptor shared by APAF-1, R proteins and CED-4

HMM:

Hidden Markov model

NBS-LRR:

Nucleotide-binding site-leucine-rich repeat

CDD:

Conserved domain database

CD-HIT:

Cluster database at high identity with tolerance

PRGdb:

Plant resistance gene database

Pfam:

Protein families

References

  • Anderson JC, Pascuzzi PE, Xiao F, Sessa G, Martin GB (2006) Host-mediated phosphorylation of type III effector AvrPto promotes Pseudomonas virulence and avirulence in tomato. Plant Cell 18:502–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27:1653–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300

    Google Scholar 

  • Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis JG, Kobe B, Dodds PN (2011) Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouktila D, Khalfallah Y, Habachi-Houimli Y, Mezghani-Khemakhem M, Makni M, Makni H (2014) Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Mol Genet and Gen 290:257–271

    Article  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolster D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdon JJ, Thrall PH (2009) Co-evolution of plants and their pathogens in natural habitats. Science 324:755–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buske FA, Bodén M, Bauer DC, Bailey TL (2010) Assigning roles to DNA regulatory motifs using comparative genomics. Bioinformatics 26:860–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Singh D, Pathak J, Kumari S, Kumar M, Poddar R, Balyan HS, Gupta PK, Prabhu KV, Mukhopadhyay K (2016) De novo assembled wheat transcriptomes delineate differentially expressed host genes in response to leaf rust infection. PLoS One 11(2):e0148453

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherukuri DP, Gupta SK, Charpe A, Koul S, Prabhu KV, Singh RB, Haq QMR (2005) Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica 143:19–26

    Article  CAS  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Danot O, Marquenet E, Vidal-Ingigliardi D, Richet E (2009) Wheel of Life, Wheel of Death: a mechanistic insight into signaling by STAND proteins. Structure 17:172–182

    Article  CAS  PubMed  Google Scholar 

  • Dean R, Van-Kan JAL, Pretorius ZA, Hammond-Kosack K, Di Pietero A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 13:414–430

    Article  PubMed  Google Scholar 

  • Eswar N, Marti-Renom MA, Webb B, Madhusudhan MS, Eramian D, Shen M, Pieper U, Sali A (2006) Comparative protein structure modeling with MODELLER. Current Protocols in Bioinformatics. Wiley, Supplement 15, 5.6.1–5.6.30

  • FAO (2013) Food and Agriculture Organization of the United Nations http://www.fao.org. Accessed 31 Oct 2016

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res Web Server Issue 39:W29–W37

    Article  CAS  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families’ database: towards a more sustainable future. Nucl Acids Res Database Issue 44:D279–D285

    Article  Google Scholar 

  • Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Zool 19:99–113

    Article  CAS  PubMed  Google Scholar 

  • Friedman AR, Baker BJ (2007) The evolution of resistance genes in multiprotein plant resistance systems. Curr Opin Genet Dev 17:493–499

    Article  CAS  PubMed  Google Scholar 

  • Glowacki S, Macioszek VK, Kononowicz AK (2011) R proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 16:1–24

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161

    Article  Google Scholar 

  • Horvath DM, Stall RE, Jones JB, Pauly MH, Vallad GE, Dahlbeck D, Staskawicz BJ, Scott JW (2012) Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLoS One 7:e42036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Rijkenberg FHJ (1998) Scanning electron microscopy of early infection structure formation by Puccinia recondita f. sp. tritici on and in susceptible and resistant wheat lines. Mycol Res 102:391–399

    Article  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • IBGSC: International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • IWGSC: International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  CAS  PubMed  Google Scholar 

  • Joslyn CA, Mniszewski SM, Fulmer A, Heaton G (2004) The gene ontology categorizer. Bioinformatics 20(Suppl 1):i169–i177

    Article  CAS  PubMed  Google Scholar 

  • Kal AJ, van Zonneveld AJ, Benes V, den Berg MV, Koerkamp MG, Albermann K, Strack N, Ruijter JM, Richter A, Dujon B, Ansorge W, Tabak HF (1999) Dynamics of gene expression revealed by comparison of Serial Analysis of Gene Expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell 10:1859–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lim CJ, Lee BW, Choi JP, Oh SK, Ahmad R, Kwon SY, Ahn J, Hur CG (2012) A genome-wide comparison of NB-LRR type of resistance gene analogs (RGA) in the plant kingdom. Mol Cells 33:385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Wicker T, Risk JM, Ashton AR, Selter LL, Matsumoto T, Keller B (2011) Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant J 65:392–403

    Article  CAS  PubMed  Google Scholar 

  • Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343:1–28

    Article  CAS  PubMed  Google Scholar 

  • Leister RT, Katagiri F (2000) A resistance gene product of the nucleotide binding site—leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J 22:345–354

    Article  CAS  PubMed  Google Scholar 

  • Leister D, Ballvora A, Salamin F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance gene from potato with potential for wide application in plants. Nat Genet 13:421–429

    Article  Google Scholar 

  • Li W, Godzik A (2006) CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Li CJ, Liu Y, Zheng YX, Yan CX, Zhang TT, Shan SH (2013) Cloning and characterization of an NBS-LRR resistance gene from peanuts (Arachis hypogaea L.). Physiol Mol Plant Pathol 84:70–75

    Article  CAS  Google Scholar 

  • Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo MC, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Crampton M, Todd A, Kalavacharla V (2012) Identification of expressed resistance gene-like sequences by data mining in 454-derived transcriptomic sequences of common bean (Phaseolus vulgaris L.). BMC Plant Biol 12:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G (2012) Genome-wide identification and mapping of NBS-encoding resistance genes in Solanum tuberosum group Phureja. PLoS One 7:e34775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Maekawa T, Cheng W, Spiridon LN, Toller A, Lukasik E, Saijo Y, Liu P, Shen Q, Micluta MA, Somssich IE, Takken FLW, Petrescu A, Chai J, Schulze-Lefert P (2011) Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9:187–199

    Article  CAS  PubMed  Google Scholar 

  • Marone D, Russo MA, Laidò G, De Vita P, Papa R, Blanco A, Gadaleta A, Rubiales D, Mastrangelo AM (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genom 14:562

    Article  CAS  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide binding superfamily. Plant J 20:317–332

    Article  CAS  PubMed  Google Scholar 

  • Mohr TJ, Mammarella ND, Hoff T, Woffenden BJ, Jelesko JG, McDowell JM (2010) The Arabidopsis downy mildew resistance gene RPP8 is induced by pathogens and salicylic acid and is regulated by W box cis elements. Mol Plant Microbe Interact 23:1303–1315

    Article  CAS  PubMed  Google Scholar 

  • Mun JH, Yu HJ, Park S, Park BS (2009) Genome-wide identification of NBS encoding resistance genes in Brassica rapa. Mol Genet Gen 282:617–631

    Article  CAS  Google Scholar 

  • Ni X, Yang J, Sun S, Yang W (2014) Identification and analysis of Resistance-like genes in the tomato genome. J Phytopathol 162:137–146

    Article  CAS  Google Scholar 

  • Nussbaumer T, Kugler KG, Schweiger W, Bader KC, Gundlach H, Spannagl M, Poursarebani N, Pfeifer M, Mayer KFX (2014) chromoWIZ: a web tool to query and visualize chromosome-anchored genes from cereal and model genomes. BMC Plant Biol 14:348

    Article  PubMed  PubMed Central  Google Scholar 

  • Panstruga R, Parker JE, Schulze-Lefert P (2009) SnapShot: plant immune response pathways. Cell 136:978.e1–978.e3

    Article  Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR and normalization in wheat. BMC Mol Biol 10:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788

    Article  CAS  PubMed  Google Scholar 

  • Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18:2082–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieu I, Powers SJ (2009) Real-time quantitative RT-PCR: design, calculations and statistics. Plant Cell 21:1031–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salamov A, Solovyev V (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanseverino W, Roma G, Simone MD, Faino L, Melito S, Stupka E, Frusciante L, Ercolano MR (2010) PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucl Acids Res Database Issue 38:D814–D821

    Article  CAS  Google Scholar 

  • Sanseverino W, Hermoso A, D’Alessandro R, Vlasova A, Andolfo G, Frusciante L, Lowy E, Roma G, Ercolano MR (2013) PRGdb 2.0: towards a community-based database model for the analysis of R-genes in plants. Nucl Acids Res Database Issue 41:D1167–D1171

    Article  CAS  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop—a common motif in ATP-and GTP-binding proteins. Trends Biochem Sci 15:430–434

    Article  PubMed  Google Scholar 

  • Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L (2009) Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma I (2012) Diseases in wheat crops, an introduction. In: Sharma I (ed) Disease resistance in wheat. CABI, Oxfordshire, pp 1–17

    Chapter  Google Scholar 

  • Shen KA, Chin DB, Arroyo-Garcia R, Ochoa OE, Lavelle DO, Wroblewski T, Meyers BC, Michelmore RW (2002) Dm3 is one member of a large constitutively expressed family of nucleotide binding site-leucine-rich repeat encoding genes. Mol Plant-Microbe Interact 15:251–261

    Article  PubMed  Google Scholar 

  • Singh D, Bhaganagare G, Bandopadhyay R, Prabhu KV, Gupta PK, Mukhopadhyay K (2012) Targeted spatio-temporal expression based characterization of state of infection and time-point of maximum defense in wheat NILs during leaf rust infection. Mol Biol Rep 39:9373–9382

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim H, Pi L, Holsten T, Gardener J, Wang B, Zhai WX, Zhu L, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Takken FL, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390

    Article  CAS  PubMed  Google Scholar 

  • Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FL, Haring MA, Cornelissen BJ (2002) The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14:2929–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tameling WI, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen BJC, Takken FL (2006) Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol 140:1233–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S, Wu S (2012) Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genomics 2012:418208. doi:10.1155/2012/418208

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang X, Xie M, Kim YJ, Zhou J, Klessig DF, Martin GB (1999) Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11:15–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian D, Traw M, Chen J, Kreitman M, Bergelson J (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77

    Article  CAS  PubMed  Google Scholar 

  • Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur J Biochem 222:9–19

    Article  CAS  PubMed  Google Scholar 

  • van der Biezen EA, Jones JD (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R228

    Article  PubMed  Google Scholar 

  • Vaux DL (1997) CED-4—the third horseman of apoptosis. Cell 90:389–390

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Coleman-Derr D, Chen G, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res Webserver Issue 43:W78–W84

    Article  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Zhang X, Yue JX, Tian D, Chen JQ (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genom 280:187–198

    Article  CAS  Google Scholar 

  • Zou H, Henzel WJ, Liu XS, Lutschg A, Wang XD (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to BTISNet SubDIC (BT/BI/04/065/04) for providing facilities for bioinformatics analyses. This work was supported by Department of Biotechnology, Government of India (Grant Nos. BT/PR6037/AGR/02/308/05 and BT/PR3925/BID/7/384/2011) and Centre of Excellence, Technical Education Quality Improvement Program-II (Grant No. NPIU/TEQIP II/FIN/31/158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Communicated by Carlos F. Quiros.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S., Kazmi, A.Z., Ahmed, Z. et al. Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum aestivum L.) and their expression during leaf rust infection. Plant Cell Rep 36, 1097–1112 (2017). https://doi.org/10.1007/s00299-017-2141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2141-0

Keywords

Navigation