Skip to main content
Log in

Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Flavonoids have broad cross-kingdom biological activity. In Arabidopsis, flavonoid accumulation in specific tissues, notably the root elongation zone and root/shoot junction modulate auxin transport, affect root gravitropism, and influence overall plant architecture. The relative contribution made by aglycones and their glycosides remains undetermined, and the longer-term phenotypic effects of altered flavonoid accumulation are not fully assessed. We tested Arabidopsis thaliana mutants that accumulate different flavonoids to determine which flavonoids were causing these affects. Tandem mass spectrometry and in situ fluorescence localisation were used to determine the in vivo levels of aglycones in specific tissues of 11 transparent testa mutants. We measured rootward and shootward auxin transport, gravitropic responses, and identified the long-term changes to root and shoot architecture. Unexpected aglycone species accumulated in vivo in several flavonoid-pathway mutants, and lower aglycone levels occurred in transcription factor mutants. Mutants accumulating more quercetin and quercetin-glycosides changed the greatest in auxin transport, gravitropism, and aerial tissue growth. Early flavonoid-pathway mutants showed aberrant lateral root initiation patterns including clustered lateral root initiations at a single site. Transcription factor mutants had multiple phenotypes including shallow root systems. These results confirm that aglycones are present at very low levels, show that lateral root initiation is perturbed in early flavonoid-pathway mutants, and indicate that altered flavonoid accumulation affects multiple aspects of plant architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DPBA:

Diphenylboric acid 2-aminoethyl ester

IAA:

Indole-3-acetic acid

RDEZ:

Root distal elongation zone

RSJ:

Root/shoot junction

N:

Naringenin

DHK:

Dihydrokaempferol

DHQ:

Dihydroquercetin

K:

Kaempferol

Q:

Quercetin

References

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  PubMed  CAS  Google Scholar 

  • Böettcher C, von Roepenack-Lahaye E, Schmidt J, Schmotz C, Neumann S, Scheel D, Clemens S (2008) Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiol 147:2107–2120

    Article  Google Scholar 

  • Brooks TLD, Miller ND, Spalding EP (2010) Plasticity of Arabidopsis root gravitropism throughout a multidimensional condition space quantified by automated image analysis. Plant Physiol 152:206–216

    Article  PubMed  CAS  Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    Article  PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Djordjevic MA (2009) Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J Exp Bot 60:751–763

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2007) Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol 145:478–490

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2008) Implications of long-distance flavonoid movement in Arabidopsis thaliana. Plant Signal Behav 3:415–417

    Article  PubMed  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  PubMed  CAS  Google Scholar 

  • Burbulis IE, Iacobucci M, Shirley BW (1996) A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8:1013–1025

    PubMed  CAS  Google Scholar 

  • Cisak A, Mielczarek C (1992) Practical and theoretical aspects of flavanone-chalcone isomerizations. J Chem Soc-Perkin Trans 2:1603–1607

    Article  Google Scholar 

  • Coe EH, McCormick SM, Modena SA (1981) White pollen in maize. J Hered 72:318–320

    Google Scholar 

  • De Smet I, Lau S, Voß U, Vanneste S, Benjamins R, Rademacher EH, Schlereth A, De Rybel B, Vassileva V, Grunewald W, Naudts M, Levesque MP, Ehrismann JS, Inzé D, Luschnig C, Benfey PN, Weijers D, Van Montagu MCE, Bennett MJ, Jürgens G, Beeckman T (2010) Bimodular auxin response controls organogenesis in Arabidopsis. Proc Natl Acad Sci USA 107:2705–2710

    Article  PubMed  Google Scholar 

  • Debeaujon I, Leon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–413

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Lamb CJ, Masoud S, Sewalt VJH, Paiva NL (1996) Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses—a review. Gene 179:61–71

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic MA, Redmond JW, Batley M, Rolfe BG (1987) Clovers secrete specific phenolic-compounds which either stimulate or repress NOD gene-expression Rhizobium trifolii. EMBO J 6:1173–1179

    PubMed  CAS  Google Scholar 

  • Djordjevic MA, Mathesius U, Arioli T, Weinman JJ, Gartner E (1997) Chalcone synthase gene expression in transgenic subterranean clover correlates with localised accumulation of flavonoids. Austr J Plant Physiol 24:119–132

    Article  CAS  Google Scholar 

  • Frydman A, Weisshaus O, Bar-Peled M, Huhman DV, Sumner LW, Marin FR, Lewinsohn E, Fluhr R, Gressel J, Eyal Y (2004) Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1, 2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J 40:88–100

    Article  PubMed  CAS  Google Scholar 

  • Graham TL (1998) Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant Physiol Biochem 36:135–144

    Article  CAS  Google Scholar 

  • Grunewald W, De Smet I, Lewis DR, Löefke C, Jansen L, Goeminne G, Bossche RV, Karimi M, De Rybel B, Vanholme B, Teichmann T, Boerjan W, Van Montagu MCE, Gheysen G, Muday GK, Friml J, Beeckman T (2012) Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci USA 109:1554–1559

    Article  PubMed  CAS  Google Scholar 

  • Homberg H, Geiger H (1980) Fluorescence and structure of flavones. Phytochemistry 19:2443–2449

    Article  CAS  Google Scholar 

  • Hutzler P, Fischbach R, Heller W, Jungblut TP, Reuber S, Schmitz R, Veit M, Weissenbock G, Schnitzler JP (1998) Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J Exp Bot 49:953–965

    CAS  Google Scholar 

  • Imin N, Nizamidin M, Wu T, Rolfe BG (2007) Factors involved in root formation in Medicago truncatula. J Exp Bot 58:439–451

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H, Evans ML (1997) Novel software for analysis of root gravitropism: comparative response patterns of Arabidopsis wild-type and axr1 seedlings. Plant Cell Environ 20:919–928

    Article  PubMed  CAS  Google Scholar 

  • Jacobs M, Rubery PH (1988) Naturally-occurring auxin transport regulators. Science 241:346–349

    Article  PubMed  CAS  Google Scholar 

  • Kachlicki P, Einhorn J, Muth D, Kerhoas L, Stobiecki M (2008) Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling. J Mass Spectrom 43:572–586

    Article  PubMed  CAS  Google Scholar 

  • Kerhoas L, Aouak D, Cingöz A, Routaboul JM, Lepiniec L, Einhorn J, Birlirakis N (2006) Structural characterization of the major flavonoid glycosides from Arabidopsis thaliana seeds. J Agric Food Chem 54:6603–6612

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Kim BG, Ko JH, Lee Y, Hur HG, Lim Y, Ahn JH (2006) Molecular cloning, expression, and characterization of a flavonoid glycosyltransferase from Arabidopsis thaliana. Plant Sci 170:897–903

    Article  CAS  Google Scholar 

  • Kitamura S, Matsuda F, Tohge T, Yonekura-Sakakibara K, Yamazaki M, Saito K, Narumi I (2010) Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. Plant J 62:549–559

    Article  PubMed  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Krĕcĕk P, Skůpa P, Libus J, Naramoto S, Tejos R, Friml J, Zažímalová E (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10:249

    Article  PubMed  Google Scholar 

  • Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4:1229–1236

    PubMed  CAS  Google Scholar 

  • Leonard E, Runguphan W, O’Connor S, Prather KJ (2009) Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nat Chem Biol 5:292–300

    Article  PubMed  CAS  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  PubMed  CAS  Google Scholar 

  • Lewis DR, Muday GK (2009) Measurement of auxin transport in Arabidopsis thaliana. Nat Protoc 4:437–451

    Article  PubMed  CAS  Google Scholar 

  • Lewis DR, Miller ND, Splitt BL, Wu GS, Spalding EP (2007) Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19:1838–1850

    Article  PubMed  CAS  Google Scholar 

  • Lewis DR, Ramirez MV, Miller ND, Vallabhaneni P, Ray WK, Helm RF, Winkel BSJ, Muday GK (2011) Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol 156:144–164

    Article  PubMed  CAS  Google Scholar 

  • Lin LZ, Harnly JM (2007) A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. J Agric Food Chem 55:1084–1096

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    Article  PubMed  CAS  Google Scholar 

  • Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, Shinozaki K, Saito K (2009) MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. Plant J 57:555–577

    Article  PubMed  CAS  Google Scholar 

  • Mo YY, Nagel C, Taylor LP (1992) Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89:7213–7217

    Article  PubMed  CAS  Google Scholar 

  • Mol JNM, Robbins MP, Dixon RA, Veltkamp E (1985) Spontaneous and enzymic rearrangement of naringenin chalcone to flavanone. Phytochemistry 24:2267–2269

    Article  CAS  Google Scholar 

  • Murphy A, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211:315–324

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi R, Kusano M, Kobayashi M, Tohge T, Yonekura-Sakakibara K, Kogure N, Yamazaki M, Kitajima M, Saito K, Takayama H (2009) Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry 70:1017–1029

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi R, Yamazaki M, Saito K (2010) A polyhedral approach for understanding flavonoid biosynthesis in Arabidopsis. New Biotechnol 27:829–836

    Article  CAS  Google Scholar 

  • Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol 126:536–548

    Article  PubMed  CAS  Google Scholar 

  • Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SI, Chen RJ, Masson PH, Murphy AS (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16:1898–1911

    Article  PubMed  CAS  Google Scholar 

  • Perbal G, Jeune B, Lefranc A, Carnero-Diaz E, Driss-Ecole D (2002) The dose-response curve of the gravitropic reaction: a re-analysis. Physiol Plant 114:336–342

    Article  PubMed  CAS  Google Scholar 

  • Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  PubMed  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, Takahashi M, Shibasaki K, Wu S, Inaba T, Tsurumi S, Baskin T (2010) Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell 22:1762–1776

    Article  PubMed  CAS  Google Scholar 

  • Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of arabidopsis. Plant Physiol 122:481–490

    Article  PubMed  CAS  Google Scholar 

  • Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635

    Article  CAS  Google Scholar 

  • Ringli C, Bigler L, Kuhn BM, Leiber R-M, Diet A, Santelia D, Frey B, Pollmann S, Klein M (2008) The modified flavonol glycosylation profile in the Arabidopsis rol1 mutants results in alterations in plant growth and cell shape formation. Plant Cell 20:1470–1481

    Article  PubMed  CAS  Google Scholar 

  • Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    Article  PubMed  CAS  Google Scholar 

  • Santelia D, Henrichs S, Vincenzetti V, Sauer M, Bigler L, Klein M, Bailly A, Lee Y, Friml J, Geisler M, Martinoia E (2008) Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem 283:31218–31226

    Article  PubMed  CAS  Google Scholar 

  • Saslowsky DE, Warek U, Winkel BSJ (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J Biol Chem 280:23735–23740

    Article  PubMed  CAS  Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  PubMed  CAS  Google Scholar 

  • Stobiecki M, Skirycz A, Kerhoas L, Kachlicki P, Muth D, Einhorn J, Mueller-Roeber B (2006) Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS. Metabolomics 2:197–219

    Article  CAS  Google Scholar 

  • Stracke R, Ishihara H, Barsch GHA, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  PubMed  CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  PubMed  CAS  Google Scholar 

  • Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17:2922–2939

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Yonekura-Sakakibara K, Niida R, Watanabe-Takahashi A, Saito K (2007) Phytochemical genomics in Arabidopsis thaliana: a case study for functional identification of flavonoid biosynthesis genes. Pure Appl Chem 79:811–823

    Article  CAS  Google Scholar 

  • Vallabhaneni P, Keith Ray W, Winkel BSJ, Helm RF (2012) Characterization of flavonol glycosides in individual Arabidopsis root tips by flow injection electrospray mass spectrometry. Phytochemistry 73:114–118

    Article  PubMed  CAS  Google Scholar 

  • Veit M, Pauli GF (1999) Major flavonoids from Arabidopsis thaliana leaves. J Nat Prod 62:1301–1303

    Article  PubMed  CAS  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    Article  PubMed  CAS  Google Scholar 

  • Withers JC, Shipp MJ, Rupasinghe SG, Sukumar P, Schuler MA, Muday GK, Wyatt SE (2013) Gravity persistent signal 1 (GPS1) reveals novel cytochrome P450s involved in gravitropism. Am J Bot 100:183–193

    Article  PubMed  CAS  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191

    Article  PubMed  CAS  Google Scholar 

  • Yin R, Messner B, Faus-Kessler T, Hoffmann T, Schwab W, Hajirezaei M-R, von Saint Paul V, Heller W, Schäeffner AR (2012) Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. J Exp Bot 63:2465–2478

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176

    Article  PubMed  CAS  Google Scholar 

  • Yu O, McGonigle B (2005) Metabolic engineering of isoflavone biosynthesis. Adv Agron 86:147–190

    Article  CAS  Google Scholar 

  • Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15:72–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

An Australian Research Council Discovery Project DP1096299 supported this work. The Australian Research Council Centre of Excellence for Integrated Legume Research (project no. CEO348212) is acknowledged for supporting the summer scholar Natalia Sampio. The authors declare that they have no conflict of interest. Discussions with colleagues in the Centre of Excellence are appreciated. Teresa Neeman of ANU Math Dept. is thanked for statistical analyses of aerial phenotyping data from the CSIRO plant phenomics facility. Gabriel James is thanked for assistance regarding mass spectrometry data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Djordjevic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2013_1883_MOESM1_ESM.jpg

Suppl Fig. S1 a Aglycones in crude extracts are not reliably detected or quantified by HPLC. HPLC traces of crude extracts from roots for selected tt mutants. The wild type trace overlays the mutant trace. Elution points for the aglycone standards are indicated. The retention times were: N, 38.7 min.; DHK, 29.2 min.; DHQ, 24.1 min.; K, 40.8 min.; and Q, 36.3 min. Identification was verified by the UV spectra associated with the aglycone. b Flavonoid aglycone levels determined by HPLC following hydrolysis. The question mark indicates a co-eluting compound making peak area analysis impossible (JPEG 958 kb)

425_2013_1883_MOESM2_ESM.jpg

Suppl Fig. S2 MS/MS product ion spectra of selected flavonoid standards. The insets show possible fragmentation patterns of the compound. The yellow highlighted masses are those used to differentiate the compounds during targeted MS/MS analyses (JPEG 1144 kb)

425_2013_1883_MOESM3_ESM.jpg

Suppl Fig. S3 The DPBA-flavonoid fluorescence in RSJs and the RDEZ of the tt mutants. DPBA-flavonoid fluorescence varies according to the flavonoid compound that accumulates. The RDEZ is where gravitropic bending occurs and the RSJ provides the transition from shoot to root. The mutants in row (a) are the flavonoid-pathway mutants, and those in (b) are in the transcription factor mutants, except Ler, which is the wild type. The mutants tt4 and tt6 have very dim fluorescence from background sinapate esters and N-glycosides, respectively. The tt5 mutant has fluorescence from the spontaneous reaction forming N, from N-chalcone, and subsequent downstream products from N (Cisak and Mielczarek 1992; Mol et al. 1985). Seedlings were analysed for fluorescence 5-day following germination. The scale bar = 100 μm (JPEG 1268 kb)

425_2013_1883_MOESM4_ESM.jpg

Suppl Fig. S4 Representative root phenotype montages of tt4 and Ler grown in jars containing medium solidified with Phytagel. Seedlings were grown for 4 weeks post germination. Scale bar = 100 μm. Seedlings were grown for 3 weeks. Scale bar = 5 mm (JPEG 963 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buer, C.S., Kordbacheh, F., Truong, T.T. et al. Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture. Planta 238, 171–189 (2013). https://doi.org/10.1007/s00425-013-1883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1883-3

Keywords

Navigation