Skip to main content
Log in

Establishment of transgenic Rhazya stricta hairy roots to modulate terpenoid indole alkaloid production

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Transgenic hairy roots of R. stricta were developed for investigation of alkaloid accumulations. The contents of five identified alkaloids, including serpentine as a new compound, increased compared to non-transformed roots.

Abstract

Rhazya stricta Decne. is a rich source of pharmacologically active terpenoid indole alkaloids (TIAs). In order to study TIA production and enable metabolic engineering, we established hairy root cultures of R. stricta by co-cultivating cotyledon, hypocotyl, leaf, and shoot explants with wild-type Agrobacterium rhizogenes strain LBA 9402 and A. rhizogenes carrying the pK2WG7-gusA binary vector. Hairy roots initiated from the leaf explants 2 to 8 weeks. Transformation was confirmed by polymerase chain reaction and in case of GUS clones with GUS staining assay. Transformation efficiency was 74 and 83 % for wild-type and GUS hairy root clones, respectively. Alkaloid accumulation was monitored by HPLC, and identification was achieved by UPLC-MS analysis. The influence of light (16 h photoperiod versus total darkness) and media composition (modified Gamborg B5 medium versus Woody Plant Medium) on the production of TIAs were investigated. Compared to non-transformed roots, wild-type hairy roots accumulated significantly higher amounts of five alkaloids. GUS hairy roots contained higher amounts two of alkaloids compared to non-transformed roots. Light conditions had a marked effect on the accumulation of five alkaloids whereas the composition of media only affected the accumulation of two alkaloids. By successfully establishing R. stricta hairy root clones, the potential of transgenic hairy root systems in modulating TIA production was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad A, Fatima K, Occolowitz JL, Solheim BA, Clardy J, Garnick RL, Le Quesne PW (1977) Structure and absolute configuration of strictamine and strictalamine from Rhazya stricta. Stereochemistry of the picralima alkaloids. J Am Chem Soc 99:1943–1946

    Article  CAS  Google Scholar 

  • Alpizar E, Dechamp E, Espeout S, Royer M, Lecouls AC, Nicole M, Bertrand B, Lashermes P, Etienne H (2006) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959–967

    Article  CAS  PubMed  Google Scholar 

  • Atta-ur-Rahman Qureshi MM, Zaman K, Malik S, Ali SS (1989) The alkaloids of Rhazya stricta and Rhazya orientalis. Fitoterapia 60:291–322

    CAS  Google Scholar 

  • Atta-ur-Rahman Khurshid Z, Shahnaz P, Habib-ur-Rehman Anjum M, Iqbal CM, Azra P (1991) Alkaloids from Rhazya stricta. Phytochemistry 30:1285–1293

    Article  CAS  Google Scholar 

  • Baeshen NA, Elkady AI, Abuzinadah OA, Mohammed H, Mutwakil MH (2012) Potential anticancer activity of the medicinal herb, Rhazya stricta, against human breast cancer. Afr J Biotechnol 11:8960–8972

    Article  Google Scholar 

  • Benjamin BD, Roja G, Heble MR (1993) Agrobacterium rhizogens mediated transformation of Rauwolfia serpentina: regeneration and alkaloid synthesis. Plant Cell Tiss Org Cult 35:253–257

    Article  CAS  Google Scholar 

  • Bhadra R, Vani S, Shanks JV (1993) Production of indole alkaloids by selected hairt root cloness of Catharanthus roseus. Biotechnol Bioeng 41:581–592

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Filkowski J, Hudson D, Kovalchuk I (2006) Homologous recombination in plants is organ specific. Mutat Res Fundam Mol Mech Mutagen 595:213–219

    Article  Google Scholar 

  • Chandra Sh (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34:407–415

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2005) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24:25–35

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Zhang W, Zhang Y, Chen J, Chen Z (2013) Identification and quantification of active alkaloids in Catharanthus roseus by liquid chromatography-ion trap mass spectrometry. Food Chem 139:845–852

    Article  CAS  PubMed  Google Scholar 

  • Cordell GA, Smith GF, Smith GN (1970a) The isolation of monomeric secodine-type alkaloids from Rhazya species. J Chem Soc D 4:189–190

    Article  Google Scholar 

  • Cordell GA, Smith GF, Smith GN (1970b) Presecamines, a new group of dimeric indole alkaloids from Rhazya species, and their thermally derived monomers, secodine and 15, 20-dihydrosecodine. Chem Commun 4:191–192

    Article  Google Scholar 

  • Dhooghe L, Mesia K, Kohtala E, Tona L, Pieters L, Vlietinck AJ, Apers S (2008) Development and validation of an HPLC-method for the determination of alkaloids in the stem bark extract of Nauclea pobeguinii. Talanta 76:462–468

    Article  CAS  PubMed  Google Scholar 

  • Donalisio M, Nana HM, Ngane RA, Gatsing D, Tchinda AT, Rovito R, Cagno V, Cagliero C, Boyom FF, Rubiolo P, Bicchi C, Lembo D (2013) In vitro anti-Herpes simplex virus activity of crude extract of the roots of Nauclea latifolia Smith (Rubiaceae). BMC Complement Altern Med 13:266–273

    Article  PubMed Central  PubMed  Google Scholar 

  • Edler MC, Yang G, Katherine JM, Bai R, Bornmann WG, Hamel E (2009) Demonstration of microtubule-like structures formed with (−)-rhazinilam from purified tubulin outside of cells and a simple tubulin-based assay for evaluation of analog activity. Arch Biochem Biophys 487:98–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elkady AI (2013) Crude alkaloid extract of Rhazya stricta inhibits cell growth and sensitizes human lung cancer cells to cisplatin through induction of apoptosis. Genet Mol Biol 36:12–21

    Article  PubMed Central  PubMed  Google Scholar 

  • Evans DA, Smith GF, Smith GN, Stapleford KSJ (1968) Rhazya alkaloids: the secamines, a new group of indole alkaloids. Chem Commun 15:859–861

    Google Scholar 

  • Falkenhagen H, Kuzovkina IN, Alterman IE, Nikolaeva LA, Stöckigt J (1993) Alkaloid formation in hairy roots and cell suspensions of Rauwolfia serpentina Benth. Nat Prod Lett 3:107–112

    Article  CAS  Google Scholar 

  • Ferreres F, Pereira DM, Valentão P, Oliveira JM, Faria J, Gaspar L, Sottomayor M, Andrade PB (2010) Simple and reproducible HPLC-DAD-ESI-MS/MS analysis of alkaloids in Catharanthus roseus roots. J Pharm Biomed Anal 51:65–69

    Article  CAS  PubMed  Google Scholar 

  • Fu CX, Zhaoa DX, Xue XF, Jin ZP, Mac FS (2005) Transformation of Saussurea involucrata by Agrobacterium rhizogenes: hairy root induction and syringin production. Process Biochem 40:3789–3794

    Article  CAS  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    Article  CAS  PubMed  Google Scholar 

  • Gerasimenko I, Sheludko Y, Unger M, Stöckigt J (2001) Development of an efficient system for the separation of indole alkaloids by high performance liquid chromatography and its applications. Phytochem Anal 12:96–103

    Article  CAS  PubMed  Google Scholar 

  • Gilani SA, Kikuchi A, Shinwari ZK, Khattak ZI, Watanabe KN (2007) Phytochemical, pharmacological and ethnobotanical studies of Rhazya stricta Decne. Phytother Res 21:301–307

    Article  CAS  PubMed  Google Scholar 

  • Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, Inzé D, Oksman-Caldentey KM (2003) A functional genomics approach toward the understanding of secondary metabolismin plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC (1991) The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep 10:221–224

    Article  CAS  PubMed  Google Scholar 

  • Hooykaas PJ, Klapwjik PM, Nuit MP, Schilperoot RA, Hirsch A (1977) Transfer of the A. tumefaciens Ti plasmid to avirulent Agrobacteria and to Rhizobium ex planta. J Gen Microbiol 98:477–484

    Article  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plant: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Kostenyuk IA, Lyubarets OF, Endress S, Gleba YY, Stöckigt J (1995) Alkaloids isolated from somatic hybrid cell cultures of the species combination Rauwolfia serpentina × Rhazya stricta. Nat Prod Lett 5:303–307

    Article  CAS  Google Scholar 

  • Le Flem-Bonhomme V, Laurain-Mattar D, Fliniaux MA (2004) Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A. rhizogenes LBA 9402. Planta 218:890–893

    Article  PubMed  Google Scholar 

  • Li J, Todd TC, Trick HN (2010) Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29:113–123

    Article  CAS  PubMed  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int Plant Prop Soc Proc 30:421–427

    Google Scholar 

  • Mehrotra S, Goel MK, Srivastava V, Rahman LU (2014) Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids. Biotechnol Lett 37:253–263

    Article  PubMed  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606–3616

    PubMed Central  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role ofthe Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    Article  CAS  Google Scholar 

  • O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23:532–547

    Article  PubMed  Google Scholar 

  • Oksman-Caldentey K-M, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  CAS  PubMed  Google Scholar 

  • Oksman-Caldentey K-M, Kivelä O, Hiltunen R (1991) Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci 78:129–136

    Article  CAS  Google Scholar 

  • Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439–446

    Article  CAS  PubMed  Google Scholar 

  • Parr AJ, Peerless AC, Hamill JD, Walton NJ, Robins RJ, Rhodes MJ (1988) Alkaloid production by transformed root cultures of Catharanthus roseus. Plant Cell Rep 7:309–312

    Article  CAS  PubMed  Google Scholar 

  • Pawelka KH, Stöckigt J (1986) Major indole alkaloids produced in cell suspension cultures of Rhazya stricta Decaisne. Z Naturforsch C 41:385–390

    CAS  Google Scholar 

  • Rischer H, Oksman-Caldentey KM (2005) Biotechnological utilization of plant genetic resources for the production of phytopharmaceuticals. Plant Genet Resour 3:83–89

    Article  CAS  Google Scholar 

  • Rischer H, Orešič M, Seppänen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MC, Inzé D, Oksman-Caldentey K-M, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103:5614–5619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samuelsson G, Bohlin L (2010) Drugs of Natural origin: a treatise of pharmacognosy, 6th edn. Swedish Pharmaceutical Press, Stockholm

    Google Scholar 

  • Sander GW (2009) Quantitative analysis of metabolic pathways in Catharanthus roseus hairy roots metabolically engineered for terpenoid indole alkaloid overproduction. Dissertation, Iowa State University

  • Sevón N, Oksman-Caldentey K-M (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  Google Scholar 

  • Sevón N, Oksman-Caldentey KM, Hiltunen R (1995) Efficient plant regeneration from hairy root-derived protoplasts of Hyoscyamus muticus. Plant Cell Rep 14:738–742

    Article  PubMed  Google Scholar 

  • Shakirov R, Telezhenetskaya MV, Bessonova IA, Aripova SF, Israilov IA, Sultankhodzhaev MN, Vinogradova VI, Akhmedzhanova VI, Tulyaganov TS, Salimov BT, Tel’nov VA (1996) Alkaloids, plants, structure, properties. Chem Nat Compd 32:216–334

    Article  Google Scholar 

  • Sheludko Y, Gerasimenko I, Unger M, Kostenyuk I, Stöckigt J (1999) Induction of alkaloid diversity in hybrid plant cell cultures. Plant Cell Rep 18:911–918

    Article  CAS  Google Scholar 

  • Sheludko Y, Gerasimenko I, Platonova O (2000) Divergence of the indole alkaloid pattern in two somatic hybrid plant cell Subcultures of Rauvolfia serpentine × Rhazya stricta. Planta Med 66:656–659

    Article  CAS  PubMed  Google Scholar 

  • Sidwa-Gorycka M, Krolicka A, Orlita A, Malinski E, Golebiowski M, Kumirska J, Chromik A, Biskup E, Stepnowski P, Lojkowska E (2009) Genetic transformation of Ruta graveolens L. by Agrobacterium rhizogenes: hairy root cultures a promising approach for production of coumarins and furanocoumarins. Plant Cell Tiss Organ Cult 97:59–69

    Article  CAS  Google Scholar 

  • Sudha CG, Obul Reddy B, Ravishankar GA, Seeni S (2003) Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnol Lett 25:631–636

    Article  CAS  PubMed  Google Scholar 

  • Sultana N, Khalid A (2010) Phytochemical and enzyme inhibitory studies on indigenous medicinal plant Rhazya stricta. Nat Prod Res 24:305–314

    Article  CAS  PubMed  Google Scholar 

  • Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157:2081–2093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  CAS  PubMed  Google Scholar 

  • Tiwari RK, Trivedi M, Guang ZC, Guo JQ, Zheng JC (2007) Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep 26:199–210

    Article  CAS  PubMed  Google Scholar 

  • Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC (2008) Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots. Biol Plantarum 52:26–35

    Article  CAS  Google Scholar 

  • Toivonen L, Balsevich J, Kurz WGW (1989) Indole alkaloid production by hairy root cultures of Catharanthus roseus. Plant Cell Tiss Org Cult 18:79–93

    Article  CAS  Google Scholar 

  • Tzfira T, Yarnitzky O, Vainstein A, Altman A (1996) Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis Mill. Plant Cell Rep 16:26–31

    Article  CAS  PubMed  Google Scholar 

  • van Der Heijden R, Jacobs DI, Snoeijer W, Hallared D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  Google Scholar 

  • Vanhala L, Hiltunen R, Oksman-Caldentey KM (1995) Virulence of different Agrobacterium strains on hairy root formation of Hyoscyamus muticus. Plant Cell Rep 14:236–240

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Flota FA, De Luca V (1998) Jasmonate modulates development and light-regulated alkaloid biosynthesis in Catharanthus roseus. Phytochemistry 49:395–402

    Article  PubMed  Google Scholar 

  • Verma PC, Rahman L, Negi AS, Jain DC, Khanuja SPS, Banerjee S (2007) Agrobacterium rhizogenes-mediated transformation of Picrorhiza kurroa Royle ex Benth.: establishment and selection of superior hairy root clone. Plant Biotechnol Rep 1:169–174

    Article  Google Scholar 

  • Wang CT, Liu H, Gao XS, Zhang HX (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29:887–894

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44:395–403

    Article  CAS  PubMed  Google Scholar 

  • Zdravković-Korać S, Muhovski Y, Druart P, Calic´ D, Radojevic´ L (2004) Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep 22:698–704

    Article  PubMed  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The skilful technical assistance of Airi Hyrkäs in HPLC analyses is gratefully acknowledged. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007–2013 under grant agreement number 222716-SmartCell. This study was financially supported by The Graduate School in Pharmaceutical Research (GSPR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Rischer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by M. Petersen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhgari, A., Yrjönen, T., Laakso, I. et al. Establishment of transgenic Rhazya stricta hairy roots to modulate terpenoid indole alkaloid production. Plant Cell Rep 34, 1939–1952 (2015). https://doi.org/10.1007/s00299-015-1841-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1841-6

Keywords

Navigation