Skip to main content
Log in

Role of HXXXD-motif/BAHD acyltransferases in the biosynthesis of extracellular lipids

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Terrestrial plants have evolved specific adaptations to preserve water and protect themselves from their environment. Such adaptations range from secondary metabolites and specialized structures that conduct water and nutrients, to cell wall modifications (i.e., cuticle and suberin) that prevent dehydration and provide a physical barrier to pathogens. Both the plant cuticle and suberized cell walls contain a lipid polymer framework embedded with waxes, and constitute a promising target for controlled genetic modification to improve desirable agronomic traits. Recent advances in genomic and molecular techniques coupled with the development of robust analytical methods have accelerated progress in comprehending these intractable lipid polymers. Gene products characterized in the wax, cutin and suberin pathways include a subset of HXXXD/BAHD family enzymes that catalyze acyl transfer reactions between CoA-activated hydroxycinnamic acid derivatives and hydroxylated aliphatics. This review highlights our current understanding of HXXXD/BAHD acyltransferases in extracellular lipid biosynthesis and discusses the chemical, ultrastructural and physiological ramifications of impairing the expression of BAHD acyltransferase-encoding genes related to cutin and suberin synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baranowski JD, Nagel CW (1981) Isolation and identification of the hydroxycinnamic acid-derivatives in white riesling wine. Am J Enol Viticult 32:5–13

    CAS  Google Scholar 

  • Baranowski JD, Nagel CW (1982) Inhibition of Pseudomonas fluorescens by hydroxycinnamic acids and their alkyl esters. J Food Sci 47:1587–1589

    CAS  Google Scholar 

  • Baranowski JD, Nagel CW (1983) Properties of alkyl hydroxycinnamates and effects on Pseudomonas fluorescens. Appl Environ Microbiol 45:218–222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sánchez ME, Benke PI, Canlas PE, Cao P, Brewer S, Lin F, Smith WL, Zhang X, Keasling JD, Jentoff RE, Foster SB, Zhou J, Ziebell A, An G, Scheller HV, Ronald PC (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol 161:1615–1633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beisson F, Li-Beisson Y, Pollard M (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15:329–337

    CAS  PubMed  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    CAS  Google Scholar 

  • Bernards MA, Lewis NG (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47:915–933

    CAS  PubMed  Google Scholar 

  • Bernards MA, Lopez ML, Zajicek J, Lewis NG (1995) Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin. J Biol Chem 270:7382–7386

    CAS  PubMed  Google Scholar 

  • Bessire M, Borel S, Fabre G, Carraça L, Efremova N, Yephremov A, Cao Y, Jetter R, Jacquat AC, Métraux JP, Nawrath C (2011) A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. Plant Cell 23:1958–1970

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beuerle T, Pichersky E (2002) Enzymatic synthesis and purification of aromatic coenzyme A esters. Anal Biochem 302:305–312

    CAS  PubMed  Google Scholar 

  • Bianchi G, Avato P, Salamini F (1975) Glossy mutants of maize VI. Chemical constituents of of glossy 2 epicuticular waxes. Maydica 20:165–173

    CAS  Google Scholar 

  • Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498

    CAS  PubMed  Google Scholar 

  • Boher P, Serra O, Soler M, Molinas M, Figueras M (2013) The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids. J Exp Bot 64:3225–3236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen G, Komatsuda T, Ma JF, Nawrath C, Pourkheirandish M, Tagiri A, Hu YG, Sameri M, Li X, Zhao X, Liu Y, Li C, Ma X, Wang A, Nair S, Wang N, Miyao A, Sakuma S, Yamaji N, Zheng X, Nevo E (2011) An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proc Natl Acad Sci USA 108:12354–12359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng AX, Gou JY, Yu XH, Yang H, Fang X, Chen XY, Liu CJ (2013) Characterization and ectopic expression of a Populus hydroxyacid hydroxycinnamoyltransferase. Mol Plant 6:1889–1903

    CAS  PubMed  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    CAS  PubMed  Google Scholar 

  • Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F (2009) CYP86B1 is required for very long chain omega-hydroxyacid and alpha, omega -dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol 150:1831–1843

    PubMed Central  CAS  PubMed  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    PubMed  Google Scholar 

  • Franke R, Schreiber L (2007) Suberin—a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10:252–259

    CAS  PubMed  Google Scholar 

  • Girard AL, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K, Vivancos J, Runavot JL, Quemener B, Petit J, Germain V, Rothan C, Marion D, Bakan B (2012) Tomato GDSL1 is required for cutin deposition in the fruit cuticle. Plant Cell 24:3119–3134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gou JY, Yu XH, Liu CJ (2009) A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. P Natl Acad Sci USA 106:18855–18860

    CAS  Google Scholar 

  • Graça J (2009) Hydroxycinnamates in suberin formation. Phytochem Rev 9:85–91

    Google Scholar 

  • Graça J, Pereira H (1997) Cork suberin: a glyceryl based polyester. Holzforschung 51:225–234

    Google Scholar 

  • Graça J, Pereira H (1999) Glyceryl-acyl and aryl-acyl dimers in Pseudotsuga menziesii bark suberin. Holzforschung 53:297–402

    Google Scholar 

  • Graça J, Pereira H (2000) Suberin structure in potato periderm: glycerol, long-chain monomers, and glyceryl and feruloyl dimers. J Agric Food Chem 48:5476–5483

    PubMed  Google Scholar 

  • Graça J, Santos S (2007) Suberin: a biopolyester of plants’ skin. Macromol Biosci 7:128–135

    PubMed  Google Scholar 

  • Gulcin I (2006) Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217:213–220

    PubMed  Google Scholar 

  • Han J, Clement JM, Li J, King A, Ng S, Jaworski JG (2010) The cytochrome P450 CYP86A22 Is a fatty acyl-coa ω-hydroxylase essential for estolide synthesis in the stigma of Petunia hybrida. J Biol Chem 285:3986–3996

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harris PJ, Trethewey JAK (2010) The distribution of ester-linked ferulic acid in the cell walls of angiosperms. Phytochem Rev 9:19–33

    CAS  Google Scholar 

  • Haslam TM, Kunst L (2013) Extending the story of very-long-chain fatty acid elongation. Plant Sci 210:93–107

    CAS  PubMed  Google Scholar 

  • Haslam TM, Manas-Fernandez A, Zhao L, Kunst L (2012) Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160:1164–1174

    PubMed Central  CAS  PubMed  Google Scholar 

  • Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R (2008) The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59:2347–2360

    PubMed Central  PubMed  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hunt G (1980) Phenolic constituents of tomato fruit cuticles. Phytochemistry 19:1415–1419

    CAS  Google Scholar 

  • Jayaprakasam B, Vanisree M, Zhang Y et al (2006) Impact of alkyl esters of caffeic and ferulic acids on tumor cell proliferation, cyclooxygenase enzyme, and lipid peroxidation. J Agric Food Chem 54:5375–5381

    CAS  PubMed  Google Scholar 

  • Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA (1995) Leaf epicuticular waxes of the ECERIFERUM mutants in Arabidopsis. Plant Physiol 108:369–377

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kinoshita K, Ishikawa H, Shinoda KZ (1958) Solubility of alcohols in water determined the surface tension measurements. Bull Chem Soc Jpn 31:1081–1082

    CAS  Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biotechnol 71:1–49

    CAS  PubMed  Google Scholar 

  • Koornneef M, Hanhart CJ, Thiel F (1989) A genetic and phenotypic description of eceriferum (cer) mutants in Arabidopsis thaliana. J Hered 80:118–122

    Google Scholar 

  • Kosma DK, Molina I, Ohlrogge JB, Pollard M (2012) Identification of an Arabidopsis fatty alcohol:caffeoyl-coenzyme A acyltransferase required for the synthesis of alkyl hydroxycinnamates in root waxes. Plant Physiol 160:237–248

    PubMed Central  CAS  PubMed  Google Scholar 

  • Landgraf R, Smolka U, Altmann S, Eschen-Lippold L, Senning M, Sonnewald S, Weigel B, Frolova N, Strehmel N, Hause G, Scheel D, Böttcher C, Rosahl S (2014) The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. Plant Cell 26:3403–3415

    CAS  PubMed  Google Scholar 

  • Lee D, Douglas CJ (1996) Two divergent members of a tobacco 4-coumarate:coenzyme A ligase (4CL) gene family—cDNA structure, gene inheritance and expression, and properties of recombinant proteins. Plant Physiol 112:193–205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leshem Y, Johnson C, Wuest SE, Song X, Ngo QA, Grossniklaus U, Sundaresan V (2012) Molecular characterization of the glauce mutant: a central cell-specific function is required for double fertilization in Arabidopsis. Plant Cell 24:3264–3277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li HY, Chye ML (2003) Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2. Plant Mol Biol 51:483–492

    CAS  PubMed  Google Scholar 

  • Li Y, Beisson F, Ohlrogge J, Pollard M (2007) Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiol 144:1267–1277

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li-Beisson YL (2011) Cutin and Suberin. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net. doi:10.1002/9780470015902.a0001920.pub2

  • Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. P Natl Acad Sci USA 106:22008–22013

    CAS  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161. doi:10.1199/tab.0161

    PubMed Central  PubMed  Google Scholar 

  • Lofty S, Negrel J, Javelle F (1994) Formation of omega-feruloyloxypalmitic acid by an enzyme from wound-healing potato-tuber disks. Phytochemistry 35:1419–1424

    Google Scholar 

  • Lotfy S, Javelle F, Negrel J (1996) Purification and characterization of hydroxycinnamoyl-coenzyme A: ω-hydroxypalmitic acid O-hydroxycinnamoyltransferase from tobacco (Nicotiana tabacum L.) cell-suspension cultures. Planta 199:475–480

    CAS  Google Scholar 

  • Ma X, Koepke J, Bayer A, Linhard V, Fritzsch G, Zhang B, Michel H, Stöckigt J (2004) Vinorine synthase from Rauvolfia: the first example of crystallization and preliminary X-ray diffraction analysis of an enzyme of the BAHD superfamily. BBA Proteins Proteom 1701:129–132

    CAS  Google Scholar 

  • Ma X, Koepke J, Panjikar S, Fritzsch G, Stöckigt J (2005) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem 280:13576–13583

    CAS  PubMed  Google Scholar 

  • Marga F, Pesacreta TC, Hasenstein KH (2001) Biochemical analysis of elastic and rigid cuticles of Cirsium horridulum. Planta 213:841–848

    CAS  PubMed  Google Scholar 

  • Mattinen M-L, Filpponen I, Järvinen R, Li B, Kallio H, Lehtinen P, Argyropoulos D (2009) Structure of the polyphenolic component of suberin isolated from potato (Solanum tuberosum var. Nikola). J Agric Food Chem 57:9747–9753

    CAS  PubMed  Google Scholar 

  • Menezes JCJMDS, Kamat SP, Cavaleiro JAS, Gaspar A, Garrido J, Borges F (2011) Synthesis and antioxidant activity of long chain alkyl hydroxycinnamates. Eur J Med Chem 46:773–777

    CAS  PubMed  Google Scholar 

  • Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moire L, Schmutz A, Buchala A, Yan B, Stark RE, Ryser U (1999) Glycerol is a suberin monomer. New experimental evidence for an old hypothesis. Plant Physiol 119:1137–1146

    PubMed Central  CAS  PubMed  Google Scholar 

  • Molina I, Bonaventure G, Ohlrogge J, Pollard M (2006) The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry 67:2597–2610

    CAS  PubMed  Google Scholar 

  • Molina I, Li-Beisson Y, Beisson F, Ohlrogge J, Pollard M (2009) Identification of an Arabidopsis feruloyl-coenzyme A transferase required for suberin synthesis. Plant Physiol 151:1317–1328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Molinari HBC, Pellny TK, Freeman J, Shewry PR, Mitchell RA (2013) Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon. Front Plant Sci 4:50

    PubMed Central  PubMed  Google Scholar 

  • Nair MG, Epp MD, Burke BA (1988) Ferulate esters of higher fatty alcohols and allelopathy in Kalanchoe diagramontiana. J Chem Ecol 14:589–603

    CAS  PubMed  Google Scholar 

  • Nawrath C, Schreiber L, Franke RB, Geldner N, Reina-Pinto JJ, Kunst L (2013) Apoplastic diffusion barriers in Arabidopsis. Arabidopsis Book 11:e0167. doi:10.1199/tab.0167

    PubMed Central  PubMed  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. AnnuRev Phytopathol 30:369–389

    CAS  Google Scholar 

  • Pan X, Siloto RMP, Wickramarathna AD, Mietkiewska E, Weselake RJ (2013) Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin. J Biol Chem 288:24173–24188

    PubMed Central  CAS  PubMed  Google Scholar 

  • Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB, Höfer R, Schreiber L, Chory J, Aharoni A (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145:1345–1360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Panikashvili D, Shi JX, Schreiber L, Aharoni A (2009) The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol 151:1773–1789

    PubMed Central  CAS  PubMed  Google Scholar 

  • Panikashvili D, Shi JX, Schreiber L, Aharoni A (2011) The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytol 190:113–124

    CAS  PubMed  Google Scholar 

  • Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Domergue F, Joubès J (2013) The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process. Plant J 73:733–746

    CAS  PubMed  Google Scholar 

  • Pereira H (1988) Chemical composition and variability of cork from Quercus suber L. Wood Sci Technol 22:211–218

    CAS  Google Scholar 

  • Pighin JA, Zheng HQ, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels AL (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    CAS  PubMed  Google Scholar 

  • Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    CAS  PubMed  Google Scholar 

  • Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83

    CAS  Google Scholar 

  • Ralston AW, Hoerr CW (1942) The solubilities of the normal saturated fatty acids. J Org Chem 07:546–555

    CAS  Google Scholar 

  • Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era—New interest for an old polymer. Plant Sci 180:399–413

    CAS  PubMed  Google Scholar 

  • Rani SH, Krishna THA, Saha S, Negi AS, Rajasekharan R (2010) Defective in Cuticular Ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase. J Biol Chem 285:38337–38347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rautengarten C, Ebert B, Ouellet M,  Nafisi M, Baidoo EE, Benke P, Stranne M, Mukhopadhyay A, Keasling JD, Sakuragi Y, Scheller HV (2012) Arabidopsis Deficient in Cutin Ferulate encodes a transferase required for feruloylation of ω-hydroxy fatty acids in cutin polyester. Plant Physiol 158:654–665

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ravn H, Andary C, Kovács G, Mølgaard P (1989) Caffeic acid esters as in vitro inhibitors of plant pathogenic bacteria and fungi. Biochem Syst Ecol 17:175–184

    CAS  Google Scholar 

  • Riley RG, Kolattukudy PE (1975) Evidence for covalently attached p-coumaric acid and ferulic acid in cutins and suberins. Plant Physiol 56:650–654

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rowland O, Domergue F (2012) Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci 193–194:28–38

    PubMed  Google Scholar 

  • Santos S, Graça J (2006) Glycerol-ω-hydroxyacid-ferulic acid oligomers in cork suberin structure. Holzforschung 60:171–177

    CAS  Google Scholar 

  • Schmutz A, Buchala AJ, Ryser U (1996) Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases. Plant Physiol 110:403–411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546–553

    CAS  PubMed  Google Scholar 

  • Schreiber L, Franke R, Hartmann K (2005) Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 220:520–530

    CAS  PubMed  Google Scholar 

  • Serra O, Figueras M, Franke R, Prat S, Molinas M (2010a) Unraveling ferulate role in suberin and periderm biology by reverse genetics. Plant Signal Behav 5:1–6

    Google Scholar 

  • Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M (2010b) A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. Plant J 62:277–290

    CAS  PubMed  Google Scholar 

  • Serra O, Chatterjee S, Huang W, Stark RE (2012) Mini-review: what nuclear magnetic resonance can tell us about protective tissues. Plant Sci 195:120–124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL (2005) Cork: properties, capabilities and applications. Int Mater Rev 50:345–365

    CAS  Google Scholar 

  • Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M (2007) A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol 144:419–431

    PubMed Central  CAS  PubMed  Google Scholar 

  • St Pierre B, De Luca V (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Rec Adv Phytochem 34:285–315

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tuominen LK, Johnson VE, Tsai C-J (2011) Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues. BMC Genom 12:236

    CAS  Google Scholar 

  • Unno H, Ichimaida F, Suzuki H, Takahashi S, Tanaka Y, Saito A, Nishino T, Kusunoki M, Nakayama T (2007) Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J Biol Chem 282:15812–15822

    CAS  PubMed  Google Scholar 

  • Vishwanath SJ, Kosma DK, Pulsifer IP, Scandola S, Pascal S, Joubès J, Dittrich-Domergue F, Lessire R, Rowland O, Domergue F (2013) Suberin-associated fatty alcohols in Arabidopsis thaliana: distributions in roots and contributions to seed coat barrier properties. Plant Physiol 163:1118–1132

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia YJ, Nicolau BJ, Schnable PS (1996) Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Plant Cell 8:1291–1304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia Y, Nikolau BJ, Schnable PS (1997) Developmental and hormonal regulation of the Arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiol 115:925–937

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xue Y, Xiao S, Kim J, Lung S-C, Chen L, Tanner JA, Suh MC, Chye M-L (2014) Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. J Exp Bot 65:5473–5483

    PubMed Central  PubMed  Google Scholar 

  • Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW (2014) ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26:3569–3588

  • Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J (2010) A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci USA 107:12040–12045

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160:638–652

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yeats TH, Martin LB, Viart HM, Isaacson T, He Y, Zhao L, Matas AJ, Buda GJ, Domozych DS, Clausen MH, Rose JK (2012) The identification of cutin synthase: formation of the plant polyester cutin. Nat Chem Biol 8:609–611

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yeats TH, Huang W, Chatterjee S, Viart HM, Clausen MH, Stark RE, Rose JK (2014) Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants. Plant J 77:667–675

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu X-H, Gou J-Y, Liu C-J (2009) BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression. Plant Mol Biol 70:421–442

    CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving Genes and Proteins. Academic Press, New York, pp 97–166

Download references

Acknowledgments

The authors would like to thank Professor John Ohlrogge (Michigan State University) for general support, and Adam Rice for producing the photograph shown in Fig. 2d. This work was funded by grants from the Natural Sciences and Engineering Research Council of Canada (I. M.), and the National Science Foundation of the United States (grant no. MCB–0615563) and the Great Lakes Bioenergy Research Center (under Department of Energy contract no. DE–AC02–05CH11231) (D.K.K.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Molina.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, I., Kosma, D. Role of HXXXD-motif/BAHD acyltransferases in the biosynthesis of extracellular lipids. Plant Cell Rep 34, 587–601 (2015). https://doi.org/10.1007/s00299-014-1721-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1721-5

Keywords

Navigation