Skip to main content
Log in

Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Here we present the development of cowpea lines tolerant to a herbicide from imidazoline class (imazapyr). Plants presented tolerance to fourfold the commercial recommended dose for weed control.

Abstract

Cowpea is one of the most important and widely cultivated legumes in many parts of the world. Its cultivation is drastically affected by weeds, causing damages during growth and development of plants, competing for light, nutrients and water. Consequently, weed control is critical, especially using no-tillage farming systems. In tropical regions, no-till farming is much easier with the use of herbicides to control weeds. This study was conducted to evaluate the possibility of obtaining transgenic cowpea plants resistant to imidazolinone, which would facilitate weed control during the summer season. The biolistic process was used to insert a mutated acetohydroxyacid synthase coding gene (Atahas) which confers tolerance to imazapyr. The transgene integration was confirmed by Southern blot analysis. Out of ten lines tested for tolerance to 100 g ha−1 imazapyr, eight presented some tolerance. One line (named 59) revealed high herbicide tolerance and developmental growth comparable to non-transgenic plants. This line was further tested for tolerance to higher herbicide concentrations and presented tolerance to 400 g ha−1 imazapyr (fourfold the commercial recommended dose) with no visible symptoms. Line 59 will be the foundation for generating imidazolinone-tolerant cowpea varieties, which will facilitate cultivation of this crop in large areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aragão FJL, Barros L, Brasileiro ACM, Ribeiro SG, Smith FD et al (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris) co-transformed via particle bombardment. Theor Appl Genet 93:142–150. doi:10.1007/BF00225739

    Article  Google Scholar 

  • Aragão FJL, Sarokin L, Vianna GR, Rech EL (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor Appl Genet 101:1–6. doi:10.1007/s001220051441

    Article  Google Scholar 

  • Assunção IP, Listik AF, Barros MCS, Amorin EPR, Silva SJC et al (2006) Diversidade genética de Begomovirus que infectam plantas invasoras na região nordeste. Planta Daninha 24:239–244. doi:10.1590/S0100-83582006000200005

    Article  Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308. doi:10.1016/j.tplants.2006.04.001

    Article  PubMed  CAS  Google Scholar 

  • Citadin CT, Ibrahim AB, Aragão FJ (2011) Genetic engineering in Cowpea (Vigna unguiculata): history, status and prospects. GM Crops 2:144–149. doi:10.4161/gmcr.2.3.18069

    Article  PubMed  Google Scholar 

  • Dale PJ (1999) Public concerns over transgenic crops. Genome Res 9:1159–1162. doi:10.1101/gr.9.12.1159

    Article  PubMed  CAS  Google Scholar 

  • Diouf D (2011) Recent advances in cowpea [Vigna unguiculata (L.) Walp.] “omics” research for genetic improvement. Afr J Biotechnol 10:2803–2810

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Freitas FCL, Medeiros VFLP, Grangeiro LC, Silva MGO, Nascimento PGML, Nunes GH (2009) Interferência de plantas daninhas na cultura do feijão-caupi. Planta Daninha. 27:241–247. doi:10.1590/S0100-83582009000200005

    Article  Google Scholar 

  • Friedrich T (2005) No-till farming require more herbicides? Outlooks Pest Manag 16:188–191. doi:10.1564/16aug12

    Article  Google Scholar 

  • Gerwick BC, Mireles LC, Eilers RJ (1993) Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol 7:519–524

    CAS  Google Scholar 

  • Ivo NL, Nascimento CP, Vieira LS, Campos FAP, Aragão FJL (2008) Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes. Plant Cell Rep 27:1475–1483. doi:10.1007/s00299-008-0573-2

    Article  PubMed  CAS  Google Scholar 

  • Kishchenko EM, Komarnitskii IK, Kuchuk NV (2011) Transgenic sugar beet tolerant to imidazolinone obtained by Agrobacterium-mediated transformation. Tsitol Genet 45:20–25

    PubMed  CAS  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258. doi:10.1023/A:1023941407376

    Article  PubMed  CAS  Google Scholar 

  • Li J, Lis KE, Timko MP (2009) Molecular genetics of race-specific resistance of cowpea to Striga gesnerioides (Willd.). Pest Manag Sci 65:520–527. doi:10.1002/ps.1722

    Article  PubMed  CAS  Google Scholar 

  • Newhouse K, Singh BK, Shaner DL, Stidham M (1991) Mutation in corn (Zea mays L.) conferring resistance to imidazolinones herbicides. Theor Appl Genet 83:65–70. doi:10.1007/BF00229227

    Article  CAS  Google Scholar 

  • Nielson SS, Brandt WE, Singh BB (1993) Genetic variability for nutritional composition and cooking time of improved cowpea lines. Crop Sci 33:469–472. doi:10.2135/cropsci1993.0011183X003300030010x

    Google Scholar 

  • Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S, Anderson DM (1996) Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed 2:307–319. doi:10.1007/BF00437909

    Article  CAS  Google Scholar 

  • Rech EL, Vianna GR, Aragão FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418. doi:10.1038/nprot.2008.9

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

  • Sato H, Takamizo T (2009) Conferred resistance to an acetolactate synthase-inhibiting herbicide in transgenic tall fescue (Festuca arundinacea Schreb.). Hort Sci 44:254–1257

    Google Scholar 

  • Shaner DL, Anderson PC, Stidham MA (1984) Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol 76:534–546. doi:10.1104/pp.76.2.545

    Article  Google Scholar 

  • Singh BB, Ajeigbe HA, Tarawali SA, Fernandez-Rivera S, Abubakar M (2003) Improving the production and utilization of cowpea as food and fodder. Field Crops Res 84:169–177. doi:10.1016/S0378-4290(03)00148-5

    Article  Google Scholar 

  • Stuart RM, Romão AS, Pizzirani-Kleiner AA, Azevedo JL, Araújo WL (2010) Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch Microbiol 192:307–313. doi:10.1007/s00203-010-0557-9

    Article  PubMed  CAS  Google Scholar 

  • Swanson EB, Hergesell MJ, Arnoldo M, Sippell DW, Wang RSC (1989) Microspore mutagenesis and selection: canola plants with field tolerance to imidazolinones. Theor Appl Genet 78:525–530. doi:10.1007/BF00290837

    Article  CAS  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246–257. doi:10.1002/ps.993

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy IN (2012) Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. J Biosci 37:167–197. doi:10.1007/s12038-012-9187-5

    Article  PubMed  CAS  Google Scholar 

  • Vianna GR, Albino MMC, Dias BBA, Silva LM, Rech EL, Aragão FJL (2004) Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci Hortic 99:371–378. doi:10.1016/S0304-4238(03)00107-9

    Article  CAS  Google Scholar 

  • Vianna GR, Aragão FJL, Rech EL (2011) A minimal DNA cassette as a vector for genetic transformation of soybean (Glycine max). Genet Mol Res 10:382–390. doi:10.4238/vol10-1gmr1058

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Francisco Freire Filho (Embrapa Meio Norte, Brazil) for providing cowpea seeds and the financial support of FINEP (Financiadora de Estudos e Projetos; Projeto Ref. 1364/08). C. Citadin was supported by a fellowship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and A. Cruz was supported by a fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. L. Aragão.

Additional information

Communicated by L. Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Citadin, C.T., Cruz, A.R.R. & Aragão, F.J.L. Development of transgenic imazapyr-tolerant cowpea (Vigna unguiculata). Plant Cell Rep 32, 537–543 (2013). https://doi.org/10.1007/s00299-013-1385-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1385-6

Keywords

Navigation