Skip to main content
Log in

Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Japanese larch (Larix leptolepis) is an ecologically and economically important species mainly grown in northeastern China, Japan and Europe. However, erratic flowering and poor germplasm resources caused by high embryo abortion rates have hampered breeding of Larix species. Somatic embryogenesis (SE) is an effective tool for the production of L. leptolepis with desirable characteristics, such as expression of totipotency, preparation of synthetic seeds, and genetic transformation. However, public genomic resources for this species are limited. We sequenced 591,759 raw expressed sequence tags (ESTs) from a 454 sequencing cDNA library of L. leptolepis somatic embryos, resulting in 572,403 high-quality reads. These reads were assembled into 70,927 unique sequences (UniGenes), including 32,321 contigs and 38,606 singletons. After removal of low-quality sequences, 65,115 UniGenes were annotated using the UniProtKB program. Based on their sequence similarity with known proteins, the matched 30,372 sequences from 664 species were estimated to represent approximately 19,000 unique genes. Gene ontology analysis revealed 21,324 UniGenes assigned to 51 categories. By Kyoto Encyclopedia of Genes and Genomes mapping, 25,773 transcripts were associated with 160 biochemical pathways. Further analysis screened four signal transduction pathways represented by 337 enzymes and 17 secondary metabolites. In silico analysis reveals that 207 UniESTs in Larix are homologous to MAPKs genes identified from other model plants, which may be involved in regulating SE development. This study provides an initial insight into the Larix transcriptomes of the pro-embryogenic mass and is a sound basis for future studies.

Key message We constructed a large, full-length 454 sequencing cDNA library of Larix leptolepis during somatic embryogenesis. More than 590,000 sequences were obtained and a deep-coverage EST database was constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albrecht C, Russinova E, Kemmerling B, Kwaaitaal M, de Vries SC (2008) Arabidopsis somatic embryogenesis receptor kinase proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiol 148(1):611–619

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Rao KS (2000) Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol 123(4):1301–1312

    Article  PubMed  CAS  Google Scholar 

  • Aquea F, Poupin MJ, Matus JT, Gebauer M, Medina C, Arce-Johnson P (2008) Synthetic seed production from somatic embryos of Pinus radiata. Biotechnol Lett 30(10):1847–1852

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez–Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  PubMed  CAS  Google Scholar 

  • Ashihara H, Stasolla C, Loukanina N, Thorpe TA (2001) Purine metabolism during white spruce somatic embryo development: salvage of adenine, adenosine, and inosine. Plant Sci 160(4):647–657

    Article  PubMed  CAS  Google Scholar 

  • Begum S, Shibagaki M, Furusawa O, Nakaba S, Yamagishi Y, Yoshimoto J, Jin HO, Sano Y, Funada R (2012) Cold stability of microtubules in wood-forming tissues of conifers during seasons of active and dormant cambium. Planta 235(1):165–179

    Article  PubMed  CAS  Google Scholar 

  • Beldade P, Rudd S, Gruber JD, Long AD (2006) A wing expressed sequence tag resource for Bicyclus anynana butterflies, an evo-devo model. BMC Genomics 7:130

    Article  PubMed  Google Scholar 

  • Bouck A, Vision T (2007) The molecular ecologist’s guide to expressed sequence tags. Mol Ecol 16(5):907–924

    Article  PubMed  CAS  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by leafy cotyledon2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103(9):3468–3473

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y, Song J, Lv A, Zhu Y, Sun C, Steinmetz A, Qian Z (2011) 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep 30(9):1593–1601

    Article  PubMed  CAS  Google Scholar 

  • Chou HH, Holmes MH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Ciavatta VT, Morillon R, Pullman GS, Chrispeels MJ, Cairney J (2001) An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine. Plant Physiol 127(4):1556–1567

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genom 1–12. doi:10.1155/2008/619832

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  PubMed  CAS  Google Scholar 

  • De Silva V, Bostwick D, Burns KL, Oldham CD, Skryabina A, Sullards MC, Wu D, Zhang Y, May SW, Pullman GS (2008) Isolation and characterization of a molecule stimulatory to growth of somatic embryos from early stage female gametophyte tissue of loblolly pine. Plant Cell Rep 27(4):633–646

    Article  PubMed  CAS  Google Scholar 

  • Dunstan DI, Dong JZ, Carrier DJ, Abrahams S (1998) Events following ABA treatment of spruce somatic embryos. In Vitro Cell Dev Biol Plant 34:159–168

    Article  CAS  Google Scholar 

  • Emrich SJ, Barbazuk WB, Li L, Schnable PS (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17(1):69–73

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Pozo N, Canales J, Guerrero-Fernández D, Villalobos DP, Díaz-Moreno SM, Bautista R, Flores-Monterroso A, Guevara MÁ, Perdiguero P, Collada C, Cervera MT, Soto A, Ordás R, Cantón FR, Avila C, Cánovas FM, Claros MG (2011) EuroPineDB: a high-coverage web database for maritime pine transcriptome. BMC Genomics 15(12):366

    Article  Google Scholar 

  • Filonova LH, Bozhkov PV, von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51(343):249–264

    Article  PubMed  CAS  Google Scholar 

  • Footitt S, Ingouff M, Clapham D, von Arnold S (2003) Expression of the viviparous 1 (Pavp1) and p34cdc2 protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst). J Exp Bot 54(388):1711–1719

    Google Scholar 

  • Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18(7):1176–1188

    Article  PubMed  CAS  Google Scholar 

  • Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics 11(9):383

    Article  Google Scholar 

  • Galau GA, Bijaisoradat N, Hughes DW (1987) Accumulation kinetics of cotton late embryogenesis-abundant mRNAs and storage protein mRNAs: coordinate regulation during embryogenesis and the role of abscisic acid. Dev Biol 123(1):198–212

    Article  PubMed  CAS  Google Scholar 

  • Hao da C, Ge G, Xiao P, Zhang Y, Yang L (2011) The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing. PLoS One 6(6): e21220 (1–15)

    Google Scholar 

  • Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R, Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 1(32):D258–D261

    Google Scholar 

  • Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lörz H, Dresselhaus T (2001) The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. Plant Physiol 127(1):33–45

    Article  PubMed  CAS  Google Scholar 

  • Hou R, Bao Z, Wang S, Su H, Li Y, Du H, Hu J, Wang S, Hu X (2011) Transcriptome sequencing and de novo analysis for Yesso scallop (Patinopecten yessoensis) using 454 GS FLX. PLoS One 6(6):e21560

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9(9):868–877

    Article  PubMed  CAS  Google Scholar 

  • Ingouff M, Farbos I, Wiweger M, von Arnold S (2003) The molecular characterization of PaHB2, a homeobox gene of the HD-GL2 family expressed during embryo development in Norway spruce. J Exp Bot 54(386):1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey FD, Peter R, Karl-Erik L, Merkle SA (1997) Forest tree biotechnology. Adv Biochem Eng Biot 57:1–44. doi:10.1007/BFb0102071

    Google Scholar 

  • Jonak C, Okrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol 5(5):415–424

    Article  PubMed  CAS  Google Scholar 

  • Joshi RK, Kar B, Nayak S (2011) Characterization of mitogen activated protein kinases (MAPKs) in the Curcuma longa expressed sequence tag database. Bioinformation 7(4):180–183

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW (2011) Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12:265

    Article  PubMed  CAS  Google Scholar 

  • Kestler HA, Müller A, Kraus JM, Buchholz M, Gress TM, Liu H, Kane DW, Zeeberg BR, Weinstein JN (2008) VennMaster: area-proportional Euler diagrams for functional GO analysis of microarrays. BMC Bioinform 9:67. doi:10.1186/1471-2105-9-67

    Article  Google Scholar 

  • Kim YW, Youn Y, Noh ER, Kim JC (1999) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Japanese larch (Larix leptolepis). Plant Cell Tiss Organ Cult 55:95–101

    Article  Google Scholar 

  • Komamine A, Murata N, Nomura K (2005) Mechanisms of somatic embryogenesis in carrot suspension cultures—morphology, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol Plant 41:6–10

    Article  CAS  Google Scholar 

  • Laux T, Jurgens G (1997) Embryogenesis: a new start in life. Plant Cell. 9(7):989–1000

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski A, Burczyk J, Mejnartowicz L (1991) Genetic structure and the mating system in an old stand of Polish larch. Silvae Genet 40(2):75–79. http://bfafh.de/inst2/sg-pdf/40_2_75.pdf

    Google Scholar 

  • Li X, Wu HX, Dillon SK, Southerton SG (2009) Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. BMC Genomics 21(10):41

    Article  CAS  Google Scholar 

  • Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5(2):461–473

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Thummasuwan S, Sehgal SK, Chouvarine P, Peterson DG (2011) Characterization of the genome of bald cypress. BMC Genomics 12(1):553. doi:10.1186/1471-2164-12-553

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Sun C, Sun Y, Wu Q, Li Y, Song J, Niu Y, Cheng X, Xu H, Li C, Liu J, Steinmetz A, Chen S (2011) Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 12 (Suppl 5):S5

  • MAPK Group (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7(7):301–308

    Article  Google Scholar 

  • Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 12(10):219

    Article  Google Scholar 

  • Misra S (1994) Conifer zygotic embryogenesis, somatic embryogenesis, and seed germination: biochemical and molecular advances. Seed Sci Res 4:357–384

    Article  CAS  Google Scholar 

  • Misra S, Attree SM, Leal I, Fowke LC (1993) Effect of abscisic acid, osmoticum, and desiccation on synthesis of storage proteins during the development of white spruce somatic embryos. Ann Bot 71:11–22

    Article  CAS  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(Web Server issue):W182–W185

    Google Scholar 

  • Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151. doi:10.1146/annurev-genom-082908-145957

    Article  PubMed  CAS  Google Scholar 

  • Nicole MC, Hamel LP, Morency MJ, Beaudoin N, Ellis BE, Séguin A (2006) MAP-ping genomic organization and organ-specific expression profiles of poplar MAP kinases and MAP kinase kinases. BMC Genomics 7:223

    Article  PubMed  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG, Pappas GJ Jr, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 30(9):312

    Article  Google Scholar 

  • Osono T, Fukasawa Y, Takeda H (2003) Roles of diverse fungi in larch needle-litter decomposition. Mycologia 95(5):820–826

    Article  PubMed  Google Scholar 

  • Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 16(11):180

    Article  Google Scholar 

  • Pavy N, Paule C, Parsons L, Crow JA, Morency MJ, Cooke J, Johnson JE, Noumen E, Guillet-Claude C, Butterfield Y, Barber S, Yang G, Liu J, Stott J, Kirkpatrick R, Siddiqui A, Holt R, Marra M, Seguin A, Retzel E, Bousquet J, MacKay J (2005) Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics 19(6):144

    Article  Google Scholar 

  • Perez-Grau L, Goldberg RB (1989) Soybean seed protein genes are regulated spatially during embryogenesis. Plant Cell 1(11):1095–1109

    PubMed  CAS  Google Scholar 

  • Pullman GS, Buchanan M (2008) Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiol 28(7):985–996

    Article  PubMed  CAS  Google Scholar 

  • Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21(8):747–758

    PubMed  CAS  Google Scholar 

  • Qi LW, Li L, Han YF, Han SY (2001) Physiological and biochemical changes in different kinds of embryogenic callus and non embryogenic callus of Larix principis rupprechtii. Scientia Silvae Sinicae 37(3):20–29

    CAS  Google Scholar 

  • Ralph SG, Chun HJ, Kolosova N, Cooper D, Oddy C, Ritland CE, Kirkpatrick R, Moore R, Barber S, Holt RA, Jones SJ, Marra MA, Douglas CJ, Ritland K, Bohlmann J (2008) A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics 14(9):484

    Article  Google Scholar 

  • Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK (2010) In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res 17(3):139–153

    Article  PubMed  CAS  Google Scholar 

  • Reski R, Faust M, Wang XH, Wehe M, Abel WO (1994) Genome analysis of the moss Physcomitrella patens (Hedw.) B.S.G. Mol Gen Genet 244(4):352–359

    Article  PubMed  CAS  Google Scholar 

  • Rigault P, Boyle B, Lepage P, Cooke JE, Bousquet J, MacKay JJ (2011) A white spruce gene catalog for conifer genome analyses. Plant Physiol 157(1):14–28

    Article  PubMed  CAS  Google Scholar 

  • Robinson AR, Dauwe R, Ukrainetz NK, Cullis IF, White R, Mansfield SD (2009) Predicting the regenerative capacity of conifer somatic embryogenic cultures by metabolomics. Plant Biotechnol J 7(9):952–963

    Article  PubMed  CAS  Google Scholar 

  • Sanges D, Cosma MP (2010) Reprogramming cell fate to pluripotency: the decision-making signalling pathways. Int J Dev Biol 54(11–12):1575–1587

    Article  PubMed  CAS  Google Scholar 

  • Schellenbaum P, Jacques A, Maillot P, Bertsch C, Mazet F, Farine S, Walter B (2008) Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Rep 27(12):1799–1809

    Article  PubMed  CAS  Google Scholar 

  • Schrader S, Kaldenhoff R, Richter G (1997) Expression of novel genes during somatic embryogenesis of suspension-cultured carrot cells (Daucus carota). J Plant Physiol 150:63–68

    Article  CAS  Google Scholar 

  • Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, Taylor DR (2012) De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Mol Ecol Resour 12(2):333–343

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Loukanina N, Ashihara H, Yeung EC, Thorpe TA (2002) Pyrimidine nucleotide and nucleic acid synthesis in embryos and megagametophytes of white spruce (Picea glauca) during germination. Physiol Plant 115(1):155–165

    Article  PubMed  CAS  Google Scholar 

  • Subramaniyam S, Mathiyalagan R, Jun Gyo I, Bum-Soo L, Sungyoung L, Deok Chun Y (2011) Transcriptome profiling and in silico analysis of Gynostemma pentaphyllum using a next generation sequencer. Plant Cell Rep 30(11):2075–2083

    Article  PubMed  CAS  Google Scholar 

  • Tereso S, Zoglauer K, Milhinhos A, Miguel C, Oliveira MM (2007) Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study. Tree Physiol 27(5):661–669

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Ujino-Ihara T, Kanamori H, Yamane H, Taguchi Y, Namiki N, Mukai Y, Yoshimura K, Tsumura Y (2005) Comparative analysis of expressed sequence tags of conifers and angiosperms reveals sequences specifically conserved in conifers. Plant Mol Biol 59(6):895–907

    Article  PubMed  CAS  Google Scholar 

  • Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17(7):1636–1647

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Wang Y, Zhang Q, Qi Y, Guo D (2009) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 9(10):465

    Article  CAS  Google Scholar 

  • Wheat CW (2008) Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica 138(4):433–451

    Article  PubMed  Google Scholar 

  • Wobus U, Weber H (1999) Seed maturation: genetic programmes and control signals. Curr Opin Plant Biol 2(1):33–38

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Sun C, Luo H, Li Y, Niu Y, Sun Y, Lu A, Chen S (2011) Transcriptome analysis of Taxus cuspidata needles based on 454 pyrosequencing. Planta Med 77(4):394–400

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Qi LW, Han SY (2009) Differentially expressed genes during Larix somatic embryo maturation and the expression profile of partial genes. Yichuan (Hereditas) 31(5):540–545

    CAS  Google Scholar 

  • Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L (2010) Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398(3):355–360

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 30830086) and the National Basic Research Program of China (973 Program: Grant Nos. 2009CB119100) and National High Technology Research and Development Program of China (Grant Nos. 2011AA100203). The authors thank Dr. Shuigen Li and Long Li for the primary collection of information and Mrs. Ting Li for the processing of data for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwang Qi.

Additional information

Communicated by B. Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, S., Han, S. et al. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Rep 31, 1637–1657 (2012). https://doi.org/10.1007/s00299-012-1277-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1277-1

Keywords

Navigation