Skip to main content
Log in

Transcription factor NnDREB1 from lotus improved drought tolerance in transgenic Arabidopsis thaliana

  • Original paper
  • Published:
Biologia Plantarum

Abstract

Dehydration responsive element binding factor (DREB) is believed to be a stress-tolerance enhancer in plants. In the present study, a cold-binding factor (CBF)/DREB homologous gene NnDREB1 (XP_010242642.1) was isolated from lotus roots using rapid amplification of cDNA ends (RACE) and reverse transcription (RT)-PCR methods. Analysis of the deduced amino acid sequence and phylogeny classified NnDREB1 into the A-1 group of the DREB1 subfamily. Expression profiling using a quantitative PCR method revealed that NnRDEB1 was significantly induced by NaCl, mannitol, and polyethylene glycol, but not by low temperature and abscisic acid. To evaluate function of NnRDEB1, Arabidopsis thaliana was transformed with the NnDREB1 gene in a binary vector construct. The transgenic plants exhibited higher resistance to drought compared with the wild-type plants in terms of survival rates, dry and fresh masses, and chlorophyll content. In addition, overexpression of NnDREB1 resulted in higher germination rates compared with the wild type plants on MS medium containing mannitol. The expressions of downstream target stressrelated genes, including cold-regulated15B (COR15B), rare cold inducible 2B (RCI2B) and repeat domain 26 (RD26), were activated in the transgenic plants. Taken together, the results suggest that NnDREB1 might be an important protein in lotus root drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cDNA:

complementary DNA

COR :

cold-regulated

DRE/CRT:

dehydration-responsive element/C-repeat

DREB:

dehydration responsive element binding factors

ERF:

ethylene response factor

ORF:

open reading frame

RACE:

rapid amplification of cDNA ends

RCI:

rare cold inducible 2B

RD:

repeat domain

RT-PCR:

reverse transcription PCR

References

  • Agarwal, P.K., Agarwal, P., Reddy, M.K., Sopory, S.K.: Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. — Plant Cell Rep. 25: 1263–1274, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Bhargava, S., Sawant, K.: Drought stress adaptation: metabolic adjustment and regulation of gene expression. — Plant Breed. 132: 21–32, 2013.

    Article  CAS  Google Scholar 

  • Borgi, W., Ghedira, K., Chouchane, N.: Antiinflammatory and analgesic activities of Zizyphus lotus root barks. — Fitoterapia 78: 16–19, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Charfeddine, M., Bouaziz, D., Charfeddine, S., Hammami, A., Ellouz, O. N., Bouzid, R.G.: Overexpression of dehydration-responsive element-binding 1 protein (DREB1) in transgenic Solanum tuberosum enhances tolerance to biotic stress. — Plant Biotechnol. Rep. 9: 79–88, 2015.

    Article  Google Scholar 

  • Cheng, L.B., Li, S.Y., Yin, J.J., Li, L.J., Chen, X.H.: Genomewide analysis of differentially expressed genes relevant to rhizome formation in lotus root (Nelumbo nucifera Gaertn). — PLoS ONE 8: e67116, 2013.

    Article  Google Scholar 

  • Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. — Plant J. 16: 735–743, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., Yamaguchi-Shinozak, K.: OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. — Plant J. 33: 751–763, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Fang, Z.W., Zhang, X.H., Gao, J.F., Wang, P.K., Xu, X.Y., Liu, Z.X., Shen, S.H., Feng, B.L.: A buckwheat (Fagopyrum esculentum) DRE-binding transcription factor gene, FeDREB1, enhances freezing and drought tolerance of transgenic Arabidopsis. — Plant mol. Biol. Rep. 33: 1510–1525, 2015.

    Article  CAS  Google Scholar 

  • Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L.S.P., Yamaguchi-Shinozaki, K., Shinozaki, K.: A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. — Plant J. 39, 863–876, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R., Mathieu, C.: An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. — Methods 25, 386–401, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F., Zhang, J.Z.: Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. — Plant Physiol. 130: 639–648, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiscox, J.D., Israelstam, G.F.: A method for extraction of cholorophyll from leaf tissue without maceration. — Can. J. Bot. 59: 463–469, 1979.

    Google Scholar 

  • Hsieh, T.H., Lee, J.T., Charng, Y.Y., Chan, M.T.: Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. — Plant Physiol. 130: 618–626, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y.H., Yang, K.S., Ryu, S.H., Kim, K.Y., Song, W.K., Kwon, S.Y., Lee, H.S., Bang, J.W., Kwak, S.S.: Molecular characterization of a cDNA encoding DRE-binding transcription factor from dehydration-treated fibrous roots of sweet potato. — Plant Physiol. Biochem. 46: 196–204, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Zhang, M., Wang, S.: Processing characteristics and flavour of full lotus root powder beverage. — J. Sci. Food Agr. 90: 2482–2489, 2010.

    Article  CAS  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis. — Plant Cell 10: 1391–1406, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y.J., Oda, K.: The DDF1 transcriptional activator up-regulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. — Plant J. 56: 613–626, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Manavalan, L.P., Guttikonda, S.K., Tran, L.S.P., Nguyen, H.T.: Physiological and molecular approaches to improve drought resistance in soybean. — Plant Cell Physiol. 50: 1260–1276, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K.: AP2/ERF family transcription factors in plant abiotic stress responses. — Biochim. biophys. Acta 1819: 86–96, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Reis, RR., Da Cunha, B.A.D.B., Martins, P.K., Martins, M.T.B., Alekcevetch, J.C., Chalfun, A., Jr., Andrade, A.C., Ribeiro, A.P., Qin, F., Mizoi, J., Yamaguchi-Shinozaki, K., Nakashima, K., Carvalho, J.F.C., De Sousa, C.A.F., Nepomuceno, A.L., Kobayashi, A.K., Molinari, HBC.: Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. — Plant Sci. 221–222: 59–68, 2014.

    Article  PubMed  Google Scholar 

  • Renato, B.R.A.Z., Hechenleitner, A.A.W., Cavalcanti, O.A.: Extraction, structural modification and characterization of lotus roots polysaccharides (Nelumbo nucifera Gaertn). Excipient with potential application in modified drug delivery systems. — Lat. Amer. J. Pharm. 26: 706–710, 2007.

    Google Scholar 

  • Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F, Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought responsive gene expression. — Plant Cell 18: 1292–1309, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. — J. exp. Bot. 58: 221–227, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Tang, M.J., Lu, S.Y., Jing, Y.X., Zhou, X.J., Sun, J.W., Shen, S.H.: Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. — Plant Physiol. Biochem. 43: 233–239, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Tian, X.H., Li, X.P., Zhou, H.L., Zhang, J.S., Gong, Z.Z., Chen, S.Y.: OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element. — J. Integr. Plant Biol. 47: 467–476, 2005.

    Article  CAS  Google Scholar 

  • Tong, Z., Hong, B., Yang, Y.J., Li, Q.H., Ma, N.C., Gao, J.P.: Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. — Plant mol. Biol. 71: 115–129, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Verlotta, A., Liberatore, M.T., Cattivelli, L., Trono, D.: Secretory phospholipases a2 in durum wheat (Triticum durum Desf.): gene expression, enzymatic activity, and relation to drought stress adaptation. — Int. J. mol. Sci. 14: 5146–5169, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q.Y., Guan, Y.C., Wu, Y.C., Chen, H.G., Chen, F., Chu, C.C.: Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. — Plant mol. Biol. 67: 589–602, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W.X., Vinocur, B., Shoseyov, O., Altman, A.: Biotechnology of plant osmotic stress tolerance: physiological and molecular consideration. — Acta Hort. 560: 285–292, 2001.

    Article  CAS  Google Scholar 

  • Wery, J., Silim, S.N., Knights, E.J., Malhotra, R.S., Cousin, R.: Screening techniques and sources and tolerance to extremes of moisture and air temperature in cool season food legumes. — Euphytica 73: 73–83, 1994.

    Article  Google Scholar 

  • Xiao, H., Siddiqua, M., Braybrook, S., Nassuth, A.: Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. — Plant Cell Environ. 29: 1410–1421, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. — Plant Cell 6: 251–264, 1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, W., Liu, X.D., Chi, X.J., Wu, C.A., Li, Y.Z., Song, L.L., Liu, X.M., Wang, Y.F., Wang, F.W., Zhang, C., Liu, Y., Zong, J.M., Li, H.Y.: Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. — Planta 233: 219–229, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J.S., Daying, W.R., Wang, L., Xia, G.G.: Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. — Plant Cell Rep. 26: 1521–1528, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. -Y. Li or L. -J. Li.

Additional information

Acknowledgements: The authors thank the Edanz Group for their editorial assistance. This work was supported by the Natural Science Foundation of Jiangsu Province, China (BK20151307), the Interdisciplinary Subject Fund of Yangzhou University, China (jcxk2015-15), and the Natural Science Fund for Colleges and Universities in Jiangsu Province, China (14KJB210012).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L.B., Yang, J.J., Yin, L. et al. Transcription factor NnDREB1 from lotus improved drought tolerance in transgenic Arabidopsis thaliana . Biol Plant 61, 651–658 (2017). https://doi.org/10.1007/s10535-017-0718-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0718-7

Additional key words

Navigation