Skip to main content

Advertisement

Log in

Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Five reference genes, 18S, EF1α, α-Tubulin, Ubiquitin and Actin, from Salvia miltiorrhiza were analyzed as internal controls for gene expression profiling assay using quantitative real-time polymerase chain reaction (qRT-PCR). The five candidate genes were measured for their transcriptional level in seven tissues, including roots, stems, leaves, sepals, petals, stamens and pistils. Then they were ranked by the GeNorm tool. The results showed that Actin and Ubiquitin were the most stable whereas EF1α and 18S did not favor normalization of qRT-PCR results in these tissues. Expression levels of the SmDXR gene were studied in parallel, with Actin and Ubiquitin both or each as reference in the seven tissues, and varying relative quantifications of the SmDXR gene in seven tissues. This study indicated that selection of the most stable genes plays an important role in gene expression profiling assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DMAPP:

Dimethylallyl diphosphate

DXR:

1-Deoxy-d-xylulose 5-phosphate reductoisomerase

IPP:

Isopentenyl diphosphate

MEP:

2-c-Methyl-d-erythritol 4-phosphate

MVA:

Mevalonate acid

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative real-time PCR

RT:

Reverse transcription

References

  1. Bustin SA (2002) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  Google Scholar 

  2. Mahoney DJ, Carey K, Fu MH, Snow R, Cameron-Smith D, Parise G, Tarnopolsky MA (2004) Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiol Genomics 18:226–231

    Article  CAS  PubMed  Google Scholar 

  3. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes internal standards: use and limits. J Biotechnol 75:291–295

    Article  CAS  PubMed  Google Scholar 

  4. Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2:143–147

    CAS  PubMed  Google Scholar 

  5. Stürzenbaum SR, kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol B 130:281–289

    Article  PubMed  Google Scholar 

  6. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    CAS  PubMed  Google Scholar 

  8. Lee PD, Sladek R, Greenwood CMT, Hudson HJ (2001) Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res 12:292–297

    Article  Google Scholar 

  9. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genomewide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  Google Scholar 

  10. Spanakis E (1993) Problems related to the interpretation of autoradiographic data on gene expression using common constitutive transcripts as controls. Nucleic Acids Res 21:3809–3819

    Article  CAS  PubMed  Google Scholar 

  11. Brunner AM, Busov VB, Strauss SH (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci 9:49–56

    Article  CAS  PubMed  Google Scholar 

  12. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  CAS  PubMed  Google Scholar 

  13. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1–research0034.11

    Article  Google Scholar 

  14. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative. J. Biochem. Biophys Method 46:69–81

    Article  CAS  Google Scholar 

  15. Stöcher M, Leb V, Berg J (2002) A convenient approach to the generation of multiple internal control DNA for a panel of real-time PCR assays. J Virol Methods 108:1–8

    Article  Google Scholar 

  16. Stöcher M, Leb V, Hölzl G, Berg J (2002) A simple approach to the generation of heterologous competitive internal controls for real-time PCR assays on the lightcycler. J Clin Virol 25:S47–S53

    Article  PubMed  Google Scholar 

  17. Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H (2003) Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52:403–408

    Article  CAS  PubMed  Google Scholar 

  18. Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872

    Article  CAS  PubMed  Google Scholar 

  19. Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed  Google Scholar 

  20. Nicot N, Hausman JF, Hoffman L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914

    Article  CAS  PubMed  Google Scholar 

  21. Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome 1(1):44–54

    Article  CAS  Google Scholar 

  22. Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  PubMed  Google Scholar 

  23. Han JY, Fan JY, Horie Y, Miura S, Cui DH, Ishii H, Hibi T, Tsuneki H, Kimura I (2008) Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther 117:280–295

    Article  CAS  PubMed  Google Scholar 

  24. Zhou LY, Zhu XX (2005) Progresses in studies of the pharmacokinetics of Danshen and its chemical components. Chinese J Exptl Tradit Med Formul 11(3):66–69

    CAS  Google Scholar 

  25. Kim SM, Kuzuyama T, Chang YJ, Song KS, Kim SU (2006) Identification of class 2 1-deoxy-d-xylulose 5-phosphate synthase and 1-deoxy-d-xylulose 5-phosphate reductoisomerase genes from Gingo biloba and their transcription in embryo culture with respect to ginkgolide biosynthesis. Planta Med 72:234–240

    Article  CAS  PubMed  Google Scholar 

  26. Wu SJ, Shi M, Wu JY (2009) Cloning and characterization of the 1-deoxy-d-xylulose 5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza (Chinese sage) hairy roots. Biotechnol Appl Biochem 52:89–95

    Article  CAS  PubMed  Google Scholar 

  27. Yan XM, Zhang L, Wang J, Liao P, Zhang Y, Zhang R, Kai GY (2009) Molecular characterization and expression of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from Salvia miltiorrhiza. Acta Physiol Plant. doi: 10.1007/s11738-009-0320-5

  28. Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau JP, Grima-Pettenati J, Rycke RD, Andersson-Gunnerås Sara, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Down regulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  PubMed  Google Scholar 

  29. Yang YF, Wu J, Zhu K, Liu LQ, Chen FD, Yu DY (2009) Identification and characterization of two chrysanthemum (Dendronthema × moriforlium) DREB genes, belonging to the AP2/EREBP family. Mol Biol Rep 36:71–81

    Article  CAS  PubMed  Google Scholar 

  30. Rajinikanth M, Harding SA, Tsai CJ (2007) The glycine decarboxylase complex multienzyme family in Populus. J Exp Bot 58(7):1761–1770

    Article  CAS  PubMed  Google Scholar 

  31. Chang SH, Ying J, Zhang JJ, Su JY, Zeng YJ, Tong YP, Li B, Li ZS (2003) Expression of a Wheat S-like RNase (WRN1) cDNA during natural- and dark-induced senescence. Acta Botanica Sinica 45(9):1071–1075

    CAS  Google Scholar 

  32. Coker JS, Davies E (2003) Selection of candidate housekeeping controls in tomato plants using EST data. Bio Techniques 35:740–748

    CAS  Google Scholar 

  33. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  34. Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59

    Article  PubMed  Google Scholar 

  35. Carretero-Paulet L, Ahumada I, Cunillera N, Rodríguez-Concepción M, Ferrer A, Boront A, Campos N (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-c-methyl-d-erythritol 4-phosphate pathway. Plant Physiol 129:1581–1591

    Article  CAS  PubMed  Google Scholar 

  36. Gong YF, Liao ZH, Chen M, Zuo KJ, Guo L, Tan QM, Huang ZS, Kai GY, Sun XF, Tan F, Tang KX (2005) Molecular cloning and characterization of a 1-deoxy-d-xylulose 5-phosphate reductoisomerase gene from Ginkgo biloba. DNA Seq 16(2):111–120

    CAS  PubMed  Google Scholar 

  37. Yao H, Gong Y, Zuo K, Ling H, Qiu C, Zhang F, Wang Y, Pi Y, Liu X, Sun X, Tang K (2008) Molecular cloning, expression profiling and functional analysis of a DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase from Camptotheca acuminata. J plant physiol 165(2):203–213

    Article  CAS  PubMed  Google Scholar 

  38. Phillips MA, León P, Boronat A, Rodríguez-Concepción M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 3(12):619–623

    Article  Google Scholar 

  39. Rodríguez-Concepción M, Ahumada I, Diez-Juez E, Sauret-Güeto S, Lois LM, Gallego F, Carretero-Paulet L, Campos N, Boronat A (2001) 1-deoxy-d-xylulose 5-phosphate reductoisomerase and plasmid isoprenoid biosynthesis during tomato fruit ripening. Plant J 27(3):213–222

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The Special Funds in Basic Scientific Research for Non-Profit Research Institutes financed by the Ministry of Finance People’s Republic of China (No. YZ-08-19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhe Wei or Luqi Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Hou, S., Cui, G. et al. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza . Mol Biol Rep 37, 507–513 (2010). https://doi.org/10.1007/s11033-009-9703-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9703-3

Keywords

Navigation