Skip to main content
Log in

Fertile plant regeneration from cryopreserved calli of Oryza rufipogon Griff. and assessment of variation in the progeny of regenerated plants

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A protocol was developed for preservation of calli of Oryza rufipogon Griff. in liquid nitrogen (−196°C). Optimal conditions for cryoprotection, pre-freezing and post-thaw recovery of calli were identified. Cryoprotectant treatment at low temperature, pre-freezing in isopropanol bath for 1 h at −70°C, rapid thawing and proper removal of cryoprotectant were critical for post-thaw survival. Genetic fidelity of the R1 plants obtained from cryopreserved, cryoprotectant-treated and untreated calli was assessed by phenotypic and molecular characterization. Comparison of phenotypic characters with seed-derived control plants showed no significant variation in the agronomic characters, but seed physical characters showed significant reduction in all the in vitro generated plants. Molecular data generated using 26 rice simple sequence repeat markers showed 4.78–7.25% change from control. Results suggested that both callus induction and cryopreservation induced heritable variations in O. rufipogon. In addition, a combination of phenotypic and molecular characterization using an appropriate marker provided better insight into genetic fidelity of recovered plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

AFLP:

Amplified fragment length polymorphism

AMP:

Amplified DNA methylation polymorphism

ANOVA:

Analysis of variance

BAP:

Benzyl amino purine

LSD:

Least significance difference

NAA:

α-Napthaleneacetic acid

PCA:

Principle component analysis

PCR:

Polymerase chain reaction

PGR:

Plant growth regulator

RAF:

Randomly amplified DNA fingerprinting

RAPD:

Randomly amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

SSR:

Simple sequence repeat

References

  • Al-Forkan M, Anthony P, Power JB, Davey MR, Lowe KC (2001) Effect of Erythrogen™ on post thaw recovery of cryopreserved cell suspensions of indica rice (Oryza sativa L.). CryoLetters 22:367–374

    CAS  PubMed  Google Scholar 

  • Bhatia R, Singh KP, Jhang T, Sharma TR (2009) Assessment of clonal fidelity of micropropagated gerbera plants by ISSR markers. Sci Hortic 119:208–211

    Article  CAS  Google Scholar 

  • Bhattacharjee B, Pattanayak A, Gupta HS (1998) Fertile plant regeneration from suspension culture derived protoplasts of two indica rice lines and field evaluation of the seed progeny. J Genet Breed 52:135–141

    Google Scholar 

  • Chen Z (1993) Effect of 2,4-D on immature embryo culture of wild rice and performance of the regenerated plants in the field. Plant Physiol Commun 29:349–351

    CAS  Google Scholar 

  • Cho JS, Hong SM, Joo SY, Yoo JS, Kim DI (2007) Cryopreservation of transgenic rice suspension cells producing recombinant hCTLA4Ig. Appl Microbiol Biotechnol 73:1470–1476

    Article  CAS  PubMed  Google Scholar 

  • Chowdari KV, Ramakhrishna W, Tamhankar SA, Hendre RR, Gupta VS, Sahasrabudhe NA, Ranjekar PK (1998) Identification of minor DNA variations in rice somaclonal variants. Plant Cell Rep 18:55–58

    Article  CAS  Google Scholar 

  • Coburn JR, Temnykh SV, Paul EM, McCouch SR (2002) Design and application of microsatellite marker panels for semiautomated genotyping of rice (Oryza sativa L.). Crop Sci 42:2092

    Article  CAS  Google Scholar 

  • Cornejo MJ, Wong VL, Blechl AE (1995) Cryopreserved callus: a source of protoplasts for rice transformation. Plant Cell Rep 14:210–214

    Article  CAS  Google Scholar 

  • Dong Y, Xu J, Xiao K, Zhang Y, Zhang J, Luo L, Matsuo M (2008) Genomic regions associated with the degree of red coloration in pericarp of rice (Oryza sativa L.). J Cereal Sci 48:556–560

    Article  CAS  Google Scholar 

  • Fábián A, Jäger K, Darkó É, Barnabás B (2008) Cryopreservation of wheat (Triticum aestivum L.) egg cells by vitrification. Acta Physiol Plant 30:737–744

    Article  Google Scholar 

  • Falan Q, Chen BT, Zhu YS, Lin XH, Zhang DP (2001) Studies on inducement of embryogenic callus from Oryza meyeriana and plantlets regeneration. Chinese Academy of Agricultural Sciences (CAAS), Science Tech Documentation and Information Centre, China

  • Finkle BJ, Ulrich JM (1982) Cryoprotectant removal temperature as a factor in the survival of frozen rice and sugarcane cells. Cryobiology 19:329–335

    Article  CAS  PubMed  Google Scholar 

  • Finkle B, Ulrich J (1983) Protocols of cryopreservation. In: Evans DA (ed) Hand book of plant cell culture, vol I. Macmillan Publishing Co, New York, pp 806–815

    Google Scholar 

  • Fukai S, Goi M, Tanaka M (1994) The chimeric structure of the apical dome of chrysanthemum (Dendranthema grandiflorum (Ramat) Kitam) is affected by cryopreservation. Sci Hortic 57:347–351

    Article  Google Scholar 

  • Gagliardi RF, Pacheco GP, Carniero LA, Valls JFM, Vieira MLC, Mansur E (2003) Cryopreservation of Arachis species by vitrification of in vitro grown shoot apices and genetic stability of recovered plants. CryoLetters 24:103–110

    CAS  PubMed  Google Scholar 

  • Gao DY, Xu ZG, Chen ZY, Sun LH, Sun QM, Lu F, Hu BS, Liu YF (2002) Identification of a resistance gene to bacterial blight (Xanthomonas oryzae pv. oryzae) in a somaclonal mutant HX-3 of indica rice. Yi Chuan Xue Bao 29:138–143

    PubMed  Google Scholar 

  • Gao DY, Vallejo VA, He B, Gai YC, Sun LH (2009) Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display. Plant Cell Tiss Organ Cult 98:187–196

    Article  CAS  Google Scholar 

  • Godwin ID, Sangduen N, Kunanuvatchaidach R, Piperidis G, Adkins SW (1997) RAPD polymorphisms among variant and phenotypically normal rice (Oryza sativa var. indica) somaclonal progenies. Plant Cell Rep 16:320–324

    CAS  Google Scholar 

  • Gupta HS, Pattanayak A (1993) Plant regeneration from mesophyll protoplasts of rice (Oryza sativa L.). Bio/Technology 11:90–94

    Article  Google Scholar 

  • Gupta PK, Varsney RK (1999) Molecular markers for genetic fidelity during micropropagation and germplasm conservation. Curr Sci 76:1308–1310

    Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Harding K, Benson EE (2000) Analysis of chloroplast DNA in Solanum tuberosum L. plantlets derived from cryopreservation. CryoLetters 21:279–288

    CAS  Google Scholar 

  • Harding K, Benson EE (2001) The use of microsatellite analysis in Solanum tuberosum L. in vitro plantlets derived from cryopreserved germplasm. CryoLetters 22:199–208

    CAS  PubMed  Google Scholar 

  • He G, Shu L, Liao L, Yin X, Sheng L, Wang X (1998) Somatic cell preservation and protoplast regeneration of important disease-resistant wild rice Oryza meyeriana Baill. Sci China 41:393–399

    Article  CAS  Google Scholar 

  • Helliot B, Madur D, Dirlewanger E, de Boucaud MT (2002) Evaluation of genetic stability in cryopreserved Prunus. In Vitro Cell Dev Biol Plant 38:493–500

    CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  CAS  PubMed  Google Scholar 

  • Hore DK (2005) Rice diversity collection, conservation and management in northeastern India. Genet Res Crop Evol 52:1129–1140

    Article  Google Scholar 

  • Huang CN, Wang JH, Yan QS, Zhang ZQ, Yan QF (1995) Plant regeneration from rice (Oryza sativa L.) embryogenic suspension cells cryopreserved by vitrification. Plant Cell Rep 14:730–734

    Article  CAS  Google Scholar 

  • Ishikawa M, Tandon P, Suzuki M, Yamaguishi-Ciampi A (1996) Cryopreservation of bromegrass (Bromus inermis Leyss) suspension cultured cells using slow prefreezing and vitrification procedures. Plant Sci 120:81–88

    Article  CAS  Google Scholar 

  • Jain S, Jain RK, Wu R (1996) A simple and efficient procedure for cryopreservation of embryonic cells of aromatic indica rice varieties. Plant Cell Rep 15:712–717

    Article  CAS  Google Scholar 

  • Jelodar NB, Blackhall NW, Hartman TPV, Brar DS, Khush GS, Davy MR, Cocking EC, Power JB (1999) Intergenic somatic hybrids of rice [O. sativa L. (+) Porteresia coartata (Roxb) Tateoka]. Theor Appl Genet 99:570–577

    Article  CAS  Google Scholar 

  • Jokipii S, Ryynänen L, Kallio PT, Aronen T, Häggman H (2004) A cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula L. × Populus tremuloides Michx. Plant Sci 166:79–806

    Article  Google Scholar 

  • Kaity A, Ashmore Se, Drew RA, Dullo ME (2008) Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep 27:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Kaity A, Ashmore Se, Drew RA (2009) Field performance evaluation and genetic integrity assessment of cryopreserved papaya clones. Plant Cell Rep 28:1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Shimamoto K, Kyozuka J (2003) Two-step regulation and continuous retrotransposition of the rice LINE-type retrotransposon Karma. Plant Cell 15:1934–1944

    Article  CAS  PubMed  Google Scholar 

  • Lynch PT, Benson EE (1990) Cryopreservation: a method for maintaining plant regeneration capability of rice cell suspension cultures. Rice genetics II. IRRI, Manila, Philippines, pp 321–332

    Google Scholar 

  • Marassi AM, Scocchi A, Gonzalez AM (2006) Plant regeneration from rice anthers cryopreserved by an encapsulation/dehydration technique. In Vitro Cell Dev Biol Plant 42:31–36

    Article  Google Scholar 

  • Martinez-Montero ME, Ojeda E, Espinosa A, Sanchez M, Castillo R, Gonzalez-Arnoa MT, Engelmann F, Lornezo JC (2002) Field performance of sugarcane (Saccharum sp.) plants derived from cryopreserved calluses. CryoLetters 23:21–26

    CAS  PubMed  Google Scholar 

  • Monk M (1990) Variation in epigenetic inheritance. Trends Genet 6:110–114

    Article  CAS  PubMed  Google Scholar 

  • Moukadiri O, Deming J, O’Connor JE, Cornejo MJ (1999a) Phenotypic characterization of progenies of rice plants derived from cryopreserved calli. Plant Cell Rep 18:625–632

    Article  CAS  Google Scholar 

  • Moukadiri O, Lopes CR, Cornejo MR (1999b) Physiological and genomic variations in rice cells recovered from direct immersion and storage in liquid nitrogen. Physiol Plant 105:442–449

    Article  CAS  Google Scholar 

  • Moukadiri O, O’Connor JE, Cornejo MJ (2002) Effect of cryopreservation procedures on recovered rice cell populations. CryoLetters 23:11–20

    CAS  PubMed  Google Scholar 

  • Muller E, Brown PTH, Harke S, Lorz H (1990) DNA variation in tissue-culture-derived rice plants. Theor Appl Genet 80:673–679

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Ngezahayo F, Dong Y, Liu B (2007) Somaclonal variation at the nucleotide sequence level in rice (Oryza sativa L.) as revealed by RAPD and ISSR markers, and by pairwise sequence analysis. J Appl Genet 48:329–336

    PubMed  Google Scholar 

  • Oono D, Niizeki M, Senda M, Ishikawa R, Akada S, Harada T (1999) An analysis of somaclonal variation in progenies regenerated from rice calli. Rice Genet Newslett 16:81–83

    Google Scholar 

  • Peschke VM, Phillips RL (1992) Genetic implications of somaclonal variation in plants. In: Scandalios JG, Wright TRF (eds) Adv Genet 30:41–75

  • Rout JR, Sarma NP (1991) Anther callus induction and green plant regeneration at high frequencies from an interspecific rice hybrid Oryza sativa Linn. × O. rufipogon Griff. Euphytica 54:155–159

    Google Scholar 

  • Sala F, Cella R, Rollo F (1979) Freeze preservation of rice cell grown in suspension culture. Plant Physiol 45:170–176

    Article  CAS  Google Scholar 

  • Scowcroft WR (1984) Genetic variability in tissue culture: impact on germplasm conservation and utilisation. International Board for Plant Genetic Resources, Report (AGPG: IBPGR/84/154), Rome

  • Shu L, Yin X, Ren X, He G (2000) Study on young panicle culture in vitro from wild rice of different genomes. Wuhan Univ J Nat Sci 5:19–122

    Google Scholar 

  • Song Z, Li B, Chen J, Lu BR (2005) Genetic diversity and conservation of common wild rice (Oryza rufipogon) in china. Plant Species Biol 20:83–92

    Article  Google Scholar 

  • Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC, Boca Raton, pp 199–226

    Google Scholar 

  • Sun LH, Wang YF, Jiang N, Li HB (1994) A recessive tall culm somatic mutant with wide compatibility in rice (Oryza sativa L.). Acta Genet Sin 21:67–73

    Google Scholar 

  • Temnykh S, DeClerk G, Lukashova A, Lipovich L, Cartinhour S, McCouch SR (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  CAS  PubMed  Google Scholar 

  • Touchell DH, Dixon KW (1996) Cryopreservation for the conservation of Australian endangered plants. In: Normah Mn (ed) Proceedings of the international workshop on in vitro conservation of plant genetic resources. Plant Biotechnology Laboratory, UKM, Kuala Lumpur, Malaysia, pp 169–180, ISBN 983-9647

  • Towill LE (1995) Cryopreservation by vitrification. In: Grout B (ed) Genetic preservation of plant cells in vitro. Springer, Berlin, pp 99–111

    Google Scholar 

  • Turner SR, Krauss SL, Bunn E, Senaratna T, Dixon KW, Touchell DH (2001) Genetic fidelity and viability of Anigozanthos viridis following tissue culture, cold storage and cryopreservation. Plant Sci 161:1099–1106

    Article  CAS  Google Scholar 

  • Wang X, Shu LH, Yuan WJ, Liao LJ, Wang XL, Shu LH, Yuan WJ (1996) Panicle culture and karyotype analysis from callus cells of a diploid wild rice, Oryza meyeriana. IRRN 21:7–8

    Google Scholar 

  • Wang J, Liu F, Huang C, Yan Q, Zhang X (1998) Observation on ultrastructural change of embryonic suspension cells cryopreserved by vitrification in rice (O. sativa L.). Chin Rice Res Newslett 6:5–6

    Google Scholar 

  • Wang JH, Bian HW, Zhang YX, Cheng HP (2001) The dual effect of antifreeze protein on cryopreservation of rice (Oryza sativa L.) embryogenic suspension cells. CryoLetters 22:175–182

    PubMed  Google Scholar 

  • Wesley-Smith J, Walters C, Berjak P, Pammenter NW (2004) The influence of water content, cooling and warming rate upon survival of embryonic axes of Poncirus trifolia (L). CryoLetters 25:129–138

    PubMed  Google Scholar 

  • Widholm J (1972) The use of FDA and phenosafranine for determining viability of cultured plant cells. Stain Technol 47:186–194

    Google Scholar 

  • Yang H, Tabei Y, Kamad H, Kayano T, Takaiwa F (1999) Detection of somaclonal variation in cultured rice cells using digoxigenin-based random amplified polymorphic DNA. Plant Cell Rep 18:520–526

    Article  CAS  Google Scholar 

  • Zeliang PK (2007) In vitro conservation of wild rice species of Northeast Hills of India and analysis of variation in the conserved plants. Ph.D. Thesis. Gauhati University, Guwahati, India

  • Zhang ZH, Hu ZL (1999) Regenerating plants from cryopreserved adventitious buds of haploids in rice. Wuhan Univ J Nat Sci 4:115–117

    Article  Google Scholar 

  • Zhang YX, Wang JH, Bian HW, Zhu M (2001) Pregrowth–desiccation: a simple and efficient procedure for the cryopreservation of rice (Oryza sativa L.) embryogenic suspension cells. CryoLetters 22:221–229

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the director, ICAR Research Complex for NEH Region for providing facilities. We also thank the anonymous reviewers whose suggestions have helped to improve the manuscript to the present form. The work was funded by grant no. BT/PR2768/AGR/142/2001 of Department of Biotechnology, Government of India to AP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pattanayak.

Additional information

Communicated by S. Merkle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 226 kb)

Supplementary material 2 (XLS 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeliang, P.K., Pattanayak, A., Iangrai, B. et al. Fertile plant regeneration from cryopreserved calli of Oryza rufipogon Griff. and assessment of variation in the progeny of regenerated plants. Plant Cell Rep 29, 1423–1433 (2010). https://doi.org/10.1007/s00299-010-0932-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0932-7

Keywords

Navigation