Skip to main content
Log in

Arabidopsis root growth dependence on glutathione is linked to auxin transport

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Glutathione depletion, e.g. by the inhibitor of its synthesis, buthionine sulphoximine (BSO), is well known to specifically reduce primary root growth. To obtain an insight into the mechanism of this inhibition, we explored the effects of BSO on Arabidopsis root growth in more detail. BSO inhibits root growth and reduces glutathione (GSH) concentration in a concentration-dependent manner leading to a linear correlation of root growth and GSH content. Microarray analysis revealed that the effect of BSO on gene expression is similar to the effects of misregulation of auxin homeostasis. In addition, auxin-resistant mutants axr1 and axr3 are less sensitive to BSO than the wild-type plants. Indeed, exposure of Arabidopsis to BSO leads to disappearance of the auxin maximum in root tips and the expression of QC cell marker. BSO treatment results in loss of the auxin carriers, PIN1, PIN2 and PIN7, from the root tips of primary roots, but not adventitious roots. Since BSO did not abolish transcription of PIN1, and since the effect of BSO was complemented by dithiothreitol, we conclude that as yet an uncharacterised post-transcriptional redox mechanism regulates the expression of PIN proteins, and thus auxin transport, in the root tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apelbaum A, Burg SP (1972) Effects of ethylene on cell division and deoxyribonucleic acid synthesis in Pisum sativum. Plant Physiol 50:117–124

    Article  PubMed  CAS  Google Scholar 

  • Arisi A-CM, Noctor G, Foyer CH, Jouanin L (1997) Modification of thiol contents in poplars (Populus tremula x P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203:362–372

    Article  PubMed  CAS  Google Scholar 

  • Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17:509–519

    Article  PubMed  CAS  Google Scholar 

  • Ball L, Accotto G-P, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineeaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462

    Article  PubMed  CAS  Google Scholar 

  • Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22:376–391

    Article  PubMed  CAS  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schultz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  PubMed  CAS  Google Scholar 

  • Breitling R, Amtmann A, Herzyk P (2004) Iterative group analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinformatics 5:34

    Article  PubMed  Google Scholar 

  • Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455

    Article  PubMed  CAS  Google Scholar 

  • Chadwick AV, Burg SP (1970) Regulation of root growth by auxin–ethylene interaction. Plant Physiol 45:192–200

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117

    Article  PubMed  CAS  Google Scholar 

  • Christensen SK, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100:469–478

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16:73–78

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation and photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  PubMed  CAS  Google Scholar 

  • Fricker MD, May M, Meyer AJ, Sheard N, White NS (2000) Measurement of glutathione levels in intact roots of Arabidopsis. J Microsc 198:162–173

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wísniewska J, Benková E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical basal axis of Arabidopsis. Nature 426:147–153

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    PubMed  CAS  Google Scholar 

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Hothorn M, Wachter A, Gromes R, Stuwe T, Rausch T, Scheffzek K (2006) Structural basis for the redox control of plant glutamate cysteine ligase. J Biol Chem 281:27557–27565

    Article  PubMed  CAS  Google Scholar 

  • Kerk NM, Jiang K, Feldman LJ (2000) Auxin metabolism in the root apical meristem. Plant Physiol 122:925–932

    Article  PubMed  CAS  Google Scholar 

  • Key JL (1962) Changes in ascorbic acid metabolism associated with auxin-induced growth. Plant Physiol 37:349–356

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzenphysiol 100:147–160

    Google Scholar 

  • Kopriva S, Rennenberg H (2004) Control of sulfate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 55:1831–1842

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, North KA, Kopriva S (2008) Complex signaling network in regulation of adenosine 5′-phosphosulfate reductase by salt stress in Arabidopsis roots. Plant Physiol 146:1408–1420

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Durenkamp M, Kopriva S (2009) Control of root growth by glutathione. In: Sirko A, De Kok LJ, Haneklaus S, Hawkesford MJ, Rennenberg H, Saito K, Schnug E, Stulen I (eds) Sulfur metabolism in plants: Regulatory aspects significance of sulfur in the food chain, agriculture, the environment. Backhuys Publishers, Leiden, pp 101–104

    Google Scholar 

  • Kuroha T, Ueguchi C, Sakakibara H, Satoh S (2006) Cytokinin receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not in adventitious roots. Plant Cell Physiol 47:234–243

    Article  PubMed  CAS  Google Scholar 

  • Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746

    Article  PubMed  CAS  Google Scholar 

  • Leyser HM, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10:403–413

    Article  PubMed  CAS  Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axrl mutants of Arabidopsis. Plant Cell 2:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Malenica N, Abas L, Benjamins R, Kitakura S, Sigmund HF, Jun KS, Hauser MT, Friml J, Luschnig C (2007) MODULATOR OF PIN genes control steady-state levels of Arabidopsis PIN proteins. Plant J 51:537–550

    Article  PubMed  CAS  Google Scholar 

  • Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Müller C, Salcedo-Sora E, Kruse C, Orsel M, Hell R, Miller AJ, Bray P, Foyer CH, Murray JA, Meyer AJ, Cobbett CS (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci USA 107:2331–2336

    Article  PubMed  Google Scholar 

  • Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–1403

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  PubMed  CAS  Google Scholar 

  • Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux P, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–476

    Article  PubMed  CAS  Google Scholar 

  • Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    Article  CAS  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  PubMed  CAS  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49:159–172

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Gromes R, Liedschulte V, Müller I, Bogs J, Galovic V, Wachter A (2007) Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biol 9:565–572

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  PubMed  CAS  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 12:198–207

    Article  PubMed  CAS  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Fernández R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inzé D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–2750

    Article  PubMed  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837–6840

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genome-wide experiments. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer CH, Rennenberg H (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase. Plant J 7:141–145

    Article  CAS  Google Scholar 

  • Titapiwatanakun B, Murphy AS (2009) Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. J Exp Bot 60:1093–1107

    Article  PubMed  CAS  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld J-P, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank L. Østergaard, P. Benfey and P. Mullineaux for the kind provision of seeds of Arabidopsis mutants and transgenic lines. The research in SK’s laboratory was supported by the UK Biotechnology and Biological Sciences Research Council. STM was supported by BBSRC grant BB/E009912/1 (to Anne Osbourn, John Innes Centre).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Kopriva.

Additional information

Communicated by L. Jouanin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koprivova, A., Mugford, S.T. & Kopriva, S. Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep 29, 1157–1167 (2010). https://doi.org/10.1007/s00299-010-0902-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0902-0

Keywords

Navigation