Skip to main content
Log in

Selectable marker elimination in the T0 generation by Agrobacterium-mediated co-transformation involving Mungbean yellow mosaic virus TrAP as a non-conditional negative selectable marker and bar for transient positive selection

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Transient selection involving the bar gene and non-conditional negative selection against stable T-DNA integration through the use of the Mungbean yellow mosaic virus (MYMV) transcriptional activator protein gene (TrAP) were used in a novel co-transformation strategy to generate selectable marker gene (SMG)-eliminated transgenic tobacco plants in the T0 generation itself. Two compatible binary plasmids, pCam-bar-TrAP-gus harbouring bar as an SMG and the MYMV TrAP gene as a non-conditional negative selectable marker, and pGA472 with the nptII gene as an unselected experimental gene of interest (GOI) were placed in the Agrobacterium tumefaciens strain EHA105 and used for co-transformation. Transient selection with 5 mg l−1 phosphinothricin (PPT) for 2–4 weeks and subsequent establishment in a PPT-minus medium yielded 114 plants from 200 leaf discs. The unselected nptII gene was detected by Southern blot analysis in 13 plants, revealing a co-transformation efficiency of 11.5%. Five of these plants harboured only the nptII gene (GOI) and not the bar gene (SMG). Thus, SMG elimination was achieved in the T0 generation itself in 4.4% (5/114) of plants, which were transiently selected for 2–4 weeks on PPT. MYMV TrAP, a non-conditional negative selectable marker, effectively reduced the recovery of plants with stable integration of the SMG (bar).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

bar:

Bialaphos resistance gene

GOI:

Gene of interest

gus :

β-Glucuronidase gene

IAA:

Indole-3-acetic acid

MS:

Murashige and Skoog

MYMV:

Mungbean yellow mosaic virus

NAA:

1-Naphthaleneacetic acid

nptII:

Neomycin phosphotransferase II gene

NSM:

Negative selectable marker

PEM:

Plant establishment medium

PPT:

Phosphinothricin

SIM:

Shoot induction medium

SMG:

Selectable marker gene

TrAP :

Transcriptional activator protein

References

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  • An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants. EMBO J 4:277–284

    PubMed  CAS  Google Scholar 

  • Ballester A, Cervera M, Pena L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45

    Article  PubMed  CAS  Google Scholar 

  • Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM (2009) Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83:5005–5013

    Article  PubMed  CAS  Google Scholar 

  • Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, Guiderdoni E (2002) Transposon-mediated generation of T-DNA- and marker-free rice plants expressing a Bt endotoxin gene. Mol Breed 10:165–180

    Article  CAS  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574

    Article  PubMed  CAS  Google Scholar 

  • Daley M, Knauf VC, Summerfelt KR, Turner JC (1998) Cotransformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17:489–496

    Article  CAS  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, De Wilde C, Van Montagu M, Depicker A (2000) Determination of the T-DNA transfer and the T-DNA integration frequencies upon co-cultivation of Arabidopsis thaliana root explants. Mol Plant Microbe Interact 13:658–665

    Article  PubMed  Google Scholar 

  • De Vetten N, Wolters AM, Raemakers K, Van Der Meer I, Ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Depicker A, Herman L, Jacobs A, Schell J, Van Montagu M (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol Gen Genet 201:477–484

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94:2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Endo S, Yamada K, Komamine A (2001) Systems for the removal of a selectable marker and their combination with a positive marker. Plant Cell Rep 20:383–392

    Article  CAS  Google Scholar 

  • Eklof S, Astot C, Sitbon F, Moritz T, Olsson O, Sandberg G (2000) Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-over producing phenotypes. Plant J 23:279–284

    Article  PubMed  CAS  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BAM (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Bio/Technol 11:1286–1292

    CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Higgins JD, Newbury HJ, Barbara DJ, Muthumeenakshi S, Puddephat IJ (2006) The production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidases 1 and 2 to extend shelf life. Mol Breed 17:7–20

    Article  CAS  Google Scholar 

  • Hohn B, Levy AA, Puchta H (2001) Elimination of selection markers from transgenic plants. Curr Opin Biotechnol 12:139–143

    Article  PubMed  CAS  Google Scholar 

  • Jacob SS, Veluthambi K (2002) Generation of selection marker-free transgenic plants by cotransformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Sci 163:801–806

    Article  CAS  Google Scholar 

  • Jia H, Pang Y, Chen X, Fang R (2006) Removal of the selectable marker gene from transgenic tobacco plants by expression of cre recombinase from a tobacco mosaic virus vector through agroinfection. Transgenic Res 15:375–384

    Article  PubMed  CAS  Google Scholar 

  • Jia HG, Liao MJ, Verbelen JP, Vissenberg K (2007) Direct creation of marker-free tobacco plant from agroinfiltrated leaf discs. Plant Cell Rep 26:1961–1965

    Article  PubMed  CAS  Google Scholar 

  • Joersbo M (2001) Advances in the selection of transgenic plants using non-antibiotic marker genes. Physiol Plant 111:269–272

    Article  PubMed  CAS  Google Scholar 

  • Karlin-Neumann GA, Brusslan JA, Tobin EM (1991) Phytochrome control of the tms2 gene in transgenic Arabidopsis: a strategy for selecting mutants in the signal transduction pathway. Plant Cell 3:573–582

    Article  PubMed  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Koprek T, McElroy D, Louwerse J, Willams-Carrier R, Lemaux PG (1996) Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA- and cytochrome P450 gene-mediated selection. Plant J 19:719–726

    Article  Google Scholar 

  • Li B, Xie C, Qiu H (2009) Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimeric or escape, transgene inheritance, and efficiency. Plant Cell Rep 28:373–386

    Article  PubMed  CAS  Google Scholar 

  • Matthews PR, Wang MB, Waterhouse PM, Thornton S, Fieg SJ, Gubler F, Jacobsen JV (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202

    Article  CAS  Google Scholar 

  • McKnight TD, Lillis MT, Simpson RB (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol Biol 8:439–445

    Article  CAS  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe DP, Tepperman JM, Dean C, Leto KJ, Erbes DL, Odell JT (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol 105:473–482

    PubMed  Google Scholar 

  • Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  PubMed  CAS  Google Scholar 

  • Park J, Lee YK, Kang BK, Chung W II (2004) Co-transformation using a negative selectable marker gene for production of selectable marker gene-free transgenic plants. Theor Appl Genet 109:1562–1567

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski K, Kunze R, DeVries S, Bisseling T (1994) Isolation of total, poly(A) and polysomal RNA from plant tissues. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp D5/1–D5/13

  • Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242

    Article  CAS  Google Scholar 

  • Rajeswaran R, Sunitha S, Shivaprasad PV, Pooggin MM, Hohn T, Veluthambi K (2007) The Mungbean yellow mosaic begomovirus transcriptional activator protein transactivates the viral promoter-driven transgene and causes toxicity in transgenic tobacco. Mol Plant Microbe Interact 20:1545–1554

    Article  PubMed  CAS  Google Scholar 

  • Richael CM, Kalyaeva M, Chretien RC, Yan H, Adimulam S, Stivison A, Weeks JT, Rommens CM (2008) Cytokinin vectors mediate marker-free and backbone-free plant transformation. Transgenic Res 17:905–917

    Article  PubMed  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of total cellular DNA from plants. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp A6/1–A6/10

  • Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant’s own genome. Plant Physiol 135:421–431

    Article  PubMed  CAS  Google Scholar 

  • Schlaman HRM, Hooykaas PJJ (1997) Effectiveness of the bacterial gene codA encoding cytosine deaminase as a negative selectable marker in Agrobacterium-mediated plant transformation. Plant J 11:1377–1385

    Article  CAS  Google Scholar 

  • Shivaprasad PV, Akbergenov R, Trinks D, Rajeswaran R, Veluthambi K, Hohn T, Pooggin MM (2005) Promoters, transcripts, and regulatory proteins of mungbean yellow mosaic geminivirus. J Virol 79:8149–8163

    Article  PubMed  CAS  Google Scholar 

  • Sripriya R, Raghupathy V, Veluthambi K (2008) Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Cell Rep 27:1635–1644

    Article  PubMed  CAS  Google Scholar 

  • Sunter G, Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321–1331

    Article  PubMed  CAS  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  PubMed  CAS  Google Scholar 

  • Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527

    Article  PubMed  CAS  Google Scholar 

  • Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116–123

    Article  PubMed  CAS  Google Scholar 

  • Yoder JI, Goldsbrough AP (1994) Transformation systems for generating marker-free transgenic plants. Bio/Technol 12:263–267

    Article  CAS  Google Scholar 

  • Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18:442–445

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu Q-W, Moller SG, Chua N-H (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. S.B. Gelvin, Purdue University, for providing the Agrobacterium tumefaciens strain EHA105, pGA472 and Nicotiana tabacum L. cv Wisconsin 38 plants, and Dr. Richard A. Jefferson, Canberra, Australia for pCAMBIA3301. M.V. RamanaRao is thankful to the Department of Biotechnology (DBT), Government of India for the Postdoctoral Fellowship granted to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karuppannan Veluthambi.

Additional information

Communicated by H. Ebinuma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

RamanaRao, M.V., Veluthambi, K. Selectable marker elimination in the T0 generation by Agrobacterium-mediated co-transformation involving Mungbean yellow mosaic virus TrAP as a non-conditional negative selectable marker and bar for transient positive selection. Plant Cell Rep 29, 473–483 (2010). https://doi.org/10.1007/s00299-010-0836-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0836-6

Keywords

Navigation