Skip to main content
Log in

Silencing of chaperonin 21, that was differentially expressed in inflorescence of seedless and seeded grapes, promoted seed abortion in tobacco and tomato fruits

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Vitis vinifera L. cv. ‘Thompson Seedless’ presents a type of stenospermocarpy in grape where fertilization occurs but seeds abort and fail to develop. To unravel the molecular basis for stenospermocarpy in grapes, subtractive hybridization was carried out in order to isolate differentially regulated genes that participate in the seedlessness machinery. Two ‘Thompson’ lines, a seeded and a seedless, were screened during different flower developmental stages. One of the genes, that was differentially expressed between the seeded and seedless lines, was the chloroplast chaperonin 21 (ch-Cpn21). ch-Cpn21 is a 21-kDa co-chaperonin polypeptide formed by two GroES-like domains fused together in tandem. Silencing of ch-Cpn21 in Nicotiana benthamiana plants resulted in leaf stunting, chlorosis, as well as ovary necrogenesis leading to seed abortion. Moreover, organ-specific silencing of ch-Cpn21 only in Lycopersicum esculentum fruits resulted in the development of seedless tomatoes. These results suggest that ch-Cpn21 may play a role in seed abortion in stenospermocarpic grapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert S, Despres B, Guilleminot J, Bechtold N, Pelletier G, Delseny M, Devic M (1999) The EMB 506 gene encodes a novel ankyrin repeat containing protein that is essential for the normal development of Arabidopsis embryos. Plant J 17:169–179

    Article  PubMed  CAS  Google Scholar 

  • Apuya NR, Yadegari R, Fischer RL, Harada JJ, Zimmerman JL, Goldberg RB (2001) The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60alpha gene. Plant Physiol 126:717–730

    Article  PubMed  CAS  Google Scholar 

  • Bellaoui M, Keddie JS, Gruissem W (2003) DCL is a plant-specific protein required for plastid ribosomal RNA processing and embryo development. Plant Mol Biol 53:531–543

    Article  PubMed  CAS  Google Scholar 

  • Bouquet A, Danglot Y (1996) Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis 35:35–42

    Google Scholar 

  • Coombe BG (1998) Grape Phenology. In: Coombe BG, Dry PR (eds) Viticulture, Vol 1. Resources Winetitles, Adelide, Australia, pp 139–153

    Google Scholar 

  • Despres B, Delseny M, Devic M (2001) Partial complementation of embryo defective mutations: a general strategy to elucidate gene function. Plant J 27:149–159

    Article  PubMed  CAS  Google Scholar 

  • Dickson R, Weiss C, Howard RJ, Alldrick SP, Ellis RJ, Lorimer G, Azem A, Viitanen PV (2000) Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem 275:11829–11835

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    Article  PubMed  CAS  Google Scholar 

  • Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36:905–917

    Article  PubMed  CAS  Google Scholar 

  • Fu DQ, Zhu BZ, Zhu HL, Jiang WB, Luo YB (2005) Virus-induced gene silencing in tomato fruit. Plant J 43:299–308

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa A, Tanaka H, Nakai M, Asahi T (2003) Deletion of a chaperonin 60 beta gene leads to cell death in the Arabidopsis lesion initiation 1 mutant. Plant Cell Physiol 44:255–261

    Article  PubMed  CAS  Google Scholar 

  • Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    Article  PubMed  CAS  Google Scholar 

  • Koumoto Y, Shimada T, Kondo M, Hara-Nishimura I, Nishimura M (2001) Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. J Biol Chem 276:29688–29694

    Article  PubMed  CAS  Google Scholar 

  • Lahougue F, This P, Bouquet A (1998) Identification of codominanat scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959

    Article  Google Scholar 

  • Ledbetter CA, Ramming DE (1989) Seedlessness in grapes. Hort Rev 11:159–184

    Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002a) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  Google Scholar 

  • Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002b) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  Google Scholar 

  • Liu Y, Nakayama N, Schiff M, Litt A, Irish VF, Dinesh-Kumar SP (2004) Virus Induced Gene Silencing of a DEFICIENS Ortholog in Nicotiana Benthamiana. Plant Mol Biol 54:701–711

    Article  PubMed  CAS  Google Scholar 

  • Loones MT, Morange M (1998) Hsp and chaperone distribution during endochondral bone development in mouse embryo. Cell Stress Chaperones 3:237–244

    Article  PubMed  CAS  Google Scholar 

  • Marocco A, Santucci A, Cerioli S, Motto M, Di Fonzo N, Thompson R, Salamini F (1991) Three high-lysine mutations control the level of ATP-binding HSP70-like proteins in the maize endosperm. Plant Cell 3:507–515

    Article  PubMed  CAS  Google Scholar 

  • Neuer A, Mele C, Liu HC, Rosenwaks Z, Witkin SS (1998) Monoclonal antibodies to mammalian heat shock proteins impair mouse embryo development in vitro. Hum Reprod 13:987–990

    Article  PubMed  CAS  Google Scholar 

  • Neuer A, Spandorfer SD, Giraldo P, Dieterle S, Rosenwaks Z, Witkin SS (2000) The role of heat shock proteins in reproduction. Hum Reprod Update 6:149–159

    Article  PubMed  CAS  Google Scholar 

  • Nishio K, Hirohashi T, Nakai M (1999) Chloroplast chaperonins: evidence for heterogeneous assembly of alpha and beta Cpn60 polypeptides into a chaperonin oligomer. Biochem Biophys Res Commun 266:584–587

    Article  PubMed  CAS  Google Scholar 

  • Nong VH, Arahira M, Phan VC, Kim CS, Zhang D, Udaka K, Fukazawa C (2002) Molecular cloning and characterization of a group II chaperonin delta-subunit from soybean. J Biochem 132:291–300

    PubMed  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  PubMed  CAS  Google Scholar 

  • Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits.A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140:3–11

    Article  PubMed  CAS  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  PubMed  CAS  Google Scholar 

  • Stout AB (1936) Seedlessness in grapes. In: N.Y. State Agriculture Experimental Station. Tech Bull, Geneva, New york

  • Striem MJ, Sopiegel-Roy P, Baron I, Shachar N (1992) The degrees of development of seed coat and the endosperm as seperate subtraits of stenospermocapic seedlessness in grape. Vitis 31:149–155

    Google Scholar 

  • Tsugeki R, Kochieva EZ, Fedoroff NV (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J 10:479–489

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, Dickerman A, Brazhnik O, Nguyen Q, McElver J, Frye C, Patton D, Meinke D (2003) The Arabidopsis SeedGenes Project. Nucleic Acids Res 31:90–93

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    Article  PubMed  CAS  Google Scholar 

  • Uwer U, Willmitzer L, Altmann T (1998) Inactivation of a glycyl-tRNA synthetase leads to an arrest in plant embryo development. Plant Cell 10:1277–1294

    Article  PubMed  CAS  Google Scholar 

  • Viitanen PV, Schmidt M, Buchner J, Suzuki T, Vierling E, Dickson R, Lorimer GH, Gatenby A, Soll J (1995) Functional characterization of the higher plant chloroplast chaperonins. J Biol Chem 270:18158–18164

    Article  PubMed  CAS  Google Scholar 

  • Witkin SS (1999) Immunity to heat shock proteins and pregnancy outcome. Infect Dis Obstet Gynecol 7:35–38

    Article  PubMed  CAS  Google Scholar 

  • Zabaleta E, Oropeza A, Assad N, Mandel A, Salerno G, Herrera-Estrella L (1994) Antisense expression of chaperonin 60 beta in transgenic tobacco plants leads to abnormal phenotypes and altered distribution of photoassimilates. Plant J 6:425–432

    Article  CAS  Google Scholar 

  • Zimmerman JL, Apuya N, Darwish K, O’Carroll C (1989) Novel regulation of heat shock genes during carrot somatic embryo development. Plant Cell 1:1137–1146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Azem Abdussalam (Tel Aviv University) for the spinach ch-Cpn21 antibodies, and Prof. Dinesh-Kumar (Yale University) for his permission to use the pTRV1 and pTRV2 vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avihai Perl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanania, U., Velcheva, M., Or, E. et al. Silencing of chaperonin 21, that was differentially expressed in inflorescence of seedless and seeded grapes, promoted seed abortion in tobacco and tomato fruits. Transgenic Res 16, 515–525 (2007). https://doi.org/10.1007/s11248-006-9044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-006-9044-0

Keywords

Navigation