Skip to main content

Advertisement

Log in

Isolation and mapping of a C3′H gene (CYP98A49) from globe artichoke, and its expression upon UV-C stress

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Globe artichoke represents a natural source of phenolic compounds with dicaffeoylquinic acids along with their biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the predominant molecules. We report the isolation and characterization of a full-length cDNA and promoter of a globe artichoke p-coumaroyl ester 3′-hydroxylase (CYP98A49), which is involved in both chlorogenic acid and lignin biosynthesis. Phylogenetic analyses demonstrated that this gene belongs to the CYP98 family. CYP98A49 was also heterologously expressed in yeast, in order to perform an enzymatic assay with p-coumaroylshikimate and p-coumaroylquinate as substrates. Real Time quantitative PCR analysis revealed that CYP98A49 expression is induced upon exposure to UV-C radiation. A single nucleotide polymorphism in the CYP98A49 gene sequence of two globe artichoke varieties used for genetic mapping allowed the localization of this gene to linkage group 10 within the previously developed maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulrazzak N, Pollet B, Ehlting J, Larsen K, Asnaghi C, Ronseau S, Proux C, Erhardt M, Seltzer V, Renou J, Ullman P, Pauly M, Lapierre C, Werck-Reichhart D (2006) A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of non redundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140:30–48. doi:10.1104/pp.105.069690

    Article  CAS  PubMed  Google Scholar 

  • Adzet T, Camarassa J, Laguna CJ (1987) Hepatoprotective activity of polyphenolic compounds from Cynara scolymus against CCl4 toxicity in isolated rat hepatocytes. J Nat Prod 50:612–617

    Article  CAS  PubMed  Google Scholar 

  • Basson A, Dubery I (2007) Identification of a cytochrome P450 cDNA (CYP98A5) from Phaseolus vulgaris, inducible by 3, 5-dichlorosalicylic acid and 2, 6-dichloro isonicotinic acid. J Plant Physiol 164:421–428. doi:10.1016/j.jplph.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  • Boudet A (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735. doi:10.1016/j.phytochem.2007.06.012

    Article  CAS  PubMed  Google Scholar 

  • Brown J, Rice-Evans C (1998) Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Radic Res 29:247–255. doi:10.1080/10715769800300281

    Article  CAS  PubMed  Google Scholar 

  • Cantos E, Espin J, Tomas-Barberan F (2001) Effect of wounding on phenolic enzymes in six minimally processed lettuce cultivars upon storage. J Agric Food Chem 49:322–330. doi:10.1021/jf000644

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Dixon R (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761. doi:10.1038/nbt1316

    Article  CAS  PubMed  Google Scholar 

  • Comino C, Lanteri S, Portis E, Acquadro A, Romani A, Hehn A, Larbat R, Bourgaud F (2007) Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L. BMC Plant Biol 7:14. doi:10.1186/1471-2229-7-14

    Article  PubMed  Google Scholar 

  • Comino C, Hehn A, Moglia A, Menin B, Bourgaud F, Lanteri S, Portis E (2009) The isolation and mapping of a novel hydroxycinnamoyltransferase in the artichoke chlorogenic acid pathway. BMC Plant Biol 9

  • Paolis De, Pignone D, Morgese A, Sonnante G (2008) Characterization and differential expression analysis of artichoke phenylalanine ammonia-lyase-coding sequences. Physiol Plant 132:33–43. doi:10.1111/j.1399-3054.2007.00996.x

    PubMed  Google Scholar 

  • Dixon R, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  Google Scholar 

  • Douglas C (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1:171–178. doi:10.1016/1360-1385(96)10019-4

    Article  Google Scholar 

  • Franke R, Humphreys J, Hemm M, Denault J, Ruegger M, Cusumano J, Chapple C (2002) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J 30:33–45. doi:10.1046/j.1365-313X.2002.01266.x

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt R (1997) Antioxidative and protective properties of extracts from leaves of the artichoke (Cynara scolymus L) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes. Toxicol Appl Pharmacol 144:279–286. doi:10.1006/taap.1997.8130

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt R (1998) Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharmacol Exp Ther 286:1122–1128

    CAS  PubMed  Google Scholar 

  • Gietz R, Woods R (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103. doi:10.1074/jbc.M209362200

    Article  CAS  PubMed  Google Scholar 

  • Izaguirre M, Mazza C, Svatos A, Baldwin I, Ballare C (2007) Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Ann Bot 99:103–109. doi:10.1093/aob/mcl226

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes J, Fu J, de Vos C, Lommen A, Hall R, Bino R, van der Plas L, Jansen R, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nat genet 38:842–849. doi:10.1038/ng0706-737

    Article  CAS  PubMed  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Kühnl T, Koch U, Heller W, Wellmann E (1987) Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-d-quinate/shikimate 3′-hydroxylase from carrot (Daucus carota L.) cell suspension cultures. Arch Biochem Biophys 258:226–232. doi:10.1016/0003-9861(87)90339-0

    Article  PubMed  Google Scholar 

  • Lanteri S, di Leo I, Ledda L, Mameli M, Portis E (2001) RAPD variation within and among populations of globe artichoke cultivar “Spinoso sardo”. Plant Breed 120:243–246. doi:10.1111/j.1439-0523.2001.tb01994.x

    Article  CAS  Google Scholar 

  • Lanteri S, Acquadro A, Comino C, Mauro R, Mauromicale G, Portis E (2006) A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theor Appl Genet 112:1532–1542. doi:10.1007/s00122-006-0256-8

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio V, Cardinali A, Di Venere D, Linsalata V, Palmieri S (1994) Browning phenomena in stored artichoke (Cynara scolymus L.) heads: enzymic or chemical reactions? Food Chem 50:1–7

    Article  CAS  Google Scholar 

  • Mahesh V, Million-Rousseau R, Ullmann P, Chabrillange N, Bustamante J, Mondolot L, Morant M, Noirot M, Hamon S, de Kochko A, Werck-Reichhart D, Campa C (2007) Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis. Plant Mol Biol 64:145–159. doi:10.1007/s11103-007-9141-3

    Article  CAS  PubMed  Google Scholar 

  • Moglia A, Lanteri S, Comino C, Acquadro A, de Vos R, Beekwilder J (2008) Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke. J Agric Food Chem 56:8641–8649. doi:10.1021/jf801653w

    Article  CAS  PubMed  Google Scholar 

  • Morant M, Hehn A, Werck-Reichhart D (2002) Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants. BMC Plant Biol 2:7. doi:10.1186/1471-2229-2-7

    Article  PubMed  Google Scholar 

  • Morant M, Schoch GA, Ullmann P, Ertunç T, Little D, Olsen CE, Petersen M, Negrel J, Werck-Reichhart D (2007) Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Mol Biol 63:1–19. doi:10.1007/s11103-006-9028-8

    Article  CAS  PubMed  Google Scholar 

  • Narusaka M, Narusaka Y, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K (2004) Crosstalk in the responses to biotic and abiotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55:327–342. doi:10.1007/s11103-004-0685-1

    Article  CAS  PubMed  Google Scholar 

  • Niggeweg R, Michael A, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754. doi:10.1038/nbt966

    Article  CAS  PubMed  Google Scholar 

  • Pompon D, Louerat B, Bronine A, Urban P (1996) Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol 272:51–64

    Article  CAS  PubMed  Google Scholar 

  • Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574. doi:10.1074/jbc.M104047200

    Article  CAS  PubMed  Google Scholar 

  • Schoch G, Morant M, Abdulrazzak N, Asnaghi C, Goepfert S, Petersen M, Ullmann P, Werck-Reichhart D (2006) The meta-hydroxylation step in the phenylpropanoid pathway: a new level of complexity in the pathway and its regulation. Environ Chem Lett 4:127–136. doi:10.1007/s10311-006-0062-1

    Article  CAS  Google Scholar 

  • Slanina J, Taborska E, Bochorakova H, Slaninova I, Humpa O, Robinson W, Schram K (2001) New and facile method of preparation of the anti-HIV-1 agent, 1, 3-dicaffeoylquinic acid. Tetrahedron Lett 42:3383–3385. doi:10.1016/S0040-4039(01)00448-8

    Article  CAS  Google Scholar 

  • Stam P, Van Ooijen J (1995) JoinMap version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen

    Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591. doi:10.1055/s-2005-873009

    Article  CAS  PubMed  Google Scholar 

  • Urban P, Mignotte C, Kazmaier M, Delorme F, Pompon D (1997) Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. J Biol Chem 272:19176–19186

    Article  CAS  PubMed  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Simon J, Aviles I, He K, Zheng Q, Tadmor Y (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem 51:601–608. doi:10.1021/jf020792bS0021-8561(02)00792-6

    Article  CAS  PubMed  Google Scholar 

  • Weeden N (1994) Approaches to mapping in horticultural crops. In: Gresshoff PM (ed) Plant genome analysis. CRC, Boca Raton, pp 51–60

    Google Scholar 

  • Ye S, Dhillon S, Ke X, Collins A, Day I (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acid Res 29:E88-8

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors kindly thank Harry Jonker (PRI) for his excellent technical assistance. The authors kindly thank Dr. Ullmann (Université Louis Pasteur, Strasbourg) for providing the substrates of the reaction, p-coumaroylquinate and p-coumaroylshikimate and for critical reading of the paper. The authors kindly thank Dr Nelson for providing CYP number to the new gene. The authors kindly thank Prof G. Mauromicale and Dr R. Mauro for providing plant material. Andrea Moglia acknowledges MIUR, for its financial support. Jules Beekwilder was financially supported by the EU 6th Frame FLORA project (2005-FOOD-CT-01730). Ric C. H. De Vos acknowledges initial support from the Centre for BioSystems Genomics, an initiative under the auspices of the Netherlands Genomics Initiative (NGI/NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Lanteri.

Additional information

Communicated by H. Judelson.

Nucleotide sequence data reported are available in the GenBank database under accession number: FJ225121

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moglia, A., Comino, C., Portis, E. et al. Isolation and mapping of a C3′H gene (CYP98A49) from globe artichoke, and its expression upon UV-C stress. Plant Cell Rep 28, 963–974 (2009). https://doi.org/10.1007/s00299-009-0695-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0695-1

Keywords

Navigation