Skip to main content
Log in

Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Most cultivars of higher plants display poor regeneration capacity of explants due to yet unknown genotypic determined mechanisms. This implies that technologies such as transformation often are restricted to model cultivars with good tissue characteristics. In the present paper, we add further evidence to our previous hypothesis that regeneration from young barley embryos derived from in vitro-cultured ovules is genotype independent. We investigated the ovule culture ability of four cultivars Femina, Salome, Corniche and Alexis, known to have poor response in other types of tissue culture, and compared that to the data for the model cultivar, Golden Promise. Subsequently, we analyzed the transformation efficiencies of the four cultivars using the protocol for Agrobacterium infection of ovules, previously developed for Golden Promise. Agrobacterium tumefaciens strain AGL0, carrying the binary vector pVec8-GFP harboring a hygromycin resistance gene and the green fluorescence protein (GFP) gene, was used for transformation. The results strongly indicate that the tissue culture response level in ovule culture is genotype independent. However, we did observe differences between cultivars with respect to frequencies of GFP-expressing embryos and frequencies of regeneration from the GFP-expressing embryos under hygromycin selection. The final frequencies of transformed plants per ovule were lower for the four cultivars than that for Golden Promise but the differences were not statistically significant. We conclude that ovule culture transformation can be used successfully to transform cultivars other than Golden Promise. Similar to that observed for Golden Promise, the ovule culture technique allows for the rapid and direct generation of high quality transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BAP :

Benzylaminopurine

GFP :

Green fluorescence protein

nos :

Nopaline synthase

References

  • Bailey MA, Boerma HR, Parrott WA (1994) Inheritance of Agrobacterium tumefaciens-induced tumorigenesis of soybean. Crop Sci 34:514–519

    Google Scholar 

  • Barro F, Martin A, Lazzeri PA, Barcelo P (1999) Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica 108:161–167. doi:10.1023/A:1003676830857

    Article  Google Scholar 

  • Bregitzer P (1992) Plant regeneration and callus type in barley: effect of genotype and culture medium. Crop Sci 32:1108–1112

    Google Scholar 

  • Bregitzer P, Tonks D (2003) Inheritance and expression of transgenes in barley. Crop Sci 43:4–12

    CAS  Google Scholar 

  • Bregitzer P, Halbert SE, Lemaux PG (1998) Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet 96:421–425. doi:10.1007/s001220050758

    Article  Google Scholar 

  • Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206. doi:10.1023/A:1009690730620

    Article  CAS  Google Scholar 

  • Castillo AM, Egaña B, Sanz JM, Cistué L (1998) Somatic embryogenesis and plant regeneration from barley cultivars grown in Spain. Plant Cell Rep 17:902–906. doi:10.1007/s002990050506

    Article  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka CM, Duncan DR, Conner TW, Wan YC (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Cho M-J, Jiang W, Lemaux PG (1998) Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci 138:229–244. doi:10.1016/S0165-1781(98)00122-X

    Article  CAS  Google Scholar 

  • Choi HW, Lemaux PG, Cho MJ (2000) Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants. Crop Sci 40:524–533

    Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L) plants from agronomically important Indica and Japonica varieties via electric-discharge particle-acceleration of exogenous DNA into immature zygotic embryos. Biotechnology 9:957–962

    Article  Google Scholar 

  • Dahleen LS, Bregitzer P (2002) An improved media system for high regeneration rates from barley immature embryo-derived callus cultures of commercial cultivars. Crop Sci 42:934–938

    Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8:833–839

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98. doi:10.1016/S0167-7799(03)00005-2

    Article  PubMed  CAS  Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant–microbe interactions. J Plant Physiol 165:71–82. doi:10.1016/j.jplph.2007.06.015

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence-analysis of the boundaries of the T-DNA. Plant J 6:271–282. doi:10.1046/j.1365-313X.1994.6020271.x

    Article  PubMed  CAS  Google Scholar 

  • Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roue C (1995) Regeneration of the barley zygote in ovule culture. Sex Plant Reprod 8:49–59

    Article  Google Scholar 

  • Holme IB, Brinch-Pedersen H, Lange M, Holm PB (2006) Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 25:1325–1335. doi:10.1007/s00299-006-0188-4

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750. doi:10.1038/nbt0696-745

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188. doi:10.1023/A:1006423110134

    Article  PubMed  CAS  Google Scholar 

  • Koprek T, Hänsch R, Nerlich A, Mendel RR, Schulze J (1996) Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci 119:79–91. doi:10.1016/0168-9452(96)04445-7

    Article  CAS  Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261. doi:10.1111/j.1467-7652.2005.00178.x

    Article  PubMed  CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA Transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  PubMed  CAS  Google Scholar 

  • Manoharan M, Dahleen LS (2002) Genetic transformation of the commercial barley (Hordeum vulgare L.) cultivar Conlon by particle bombardment of callus. Plant Cell Rep 21:76–80. doi:10.1007/s00299-002-0477-5

    Article  CAS  Google Scholar 

  • Mauro AO, Pfeiffer TW, Collins GB (1995) Inheritance of soybean susceptibility to Agrobacterium tumefaciens and its relationship to transformation. Crop Sci 35:1152–1156

    Google Scholar 

  • Mouritzen P, Holm PB (1994) Chloroplast genome breakdown in microspore cultures of barley (Hordeum vulgare L) occurs primarily during regeneration. J Plant Physiol 144:586–593

    CAS  Google Scholar 

  • Murray F, Brettell R, Matthews P, Bishop D, Jacobsen J (2004) Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes. Plant Cell Rep 22:397–402. doi:10.1007/s00299-003-0704-8

    Article  PubMed  CAS  Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Sci USA 97:948–953

    Article  CAS  Google Scholar 

  • Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317–333

    Article  PubMed  CAS  Google Scholar 

  • Owens LD, Cress DE (1985) Genotypic variability of soybean response to Agrobacterium strains harbouring the Ti or Ri plasmids. Plant Physiol 77:87–94

    PubMed  CAS  Google Scholar 

  • Robbs SL, Hawes MC, Lin H-J, Pueppke SG, Smith LY (1991) Inheritance of resistance to crown gall in Pisum sativum. Plant Physiol 95:52–57

    Article  PubMed  Google Scholar 

  • SAS Institute Inc. (1993) SAS Technical Report P-23. SAS/STAT Software. The GENMOD Procedure. Release 6.09. SAS Institute Inc. Cary, NC, p 88

  • Sharma VK, Hänsch R, Mendel RR, Schulze J (2005) Mature embryo axis-based high frequency somatic embryogenesis and plant regeneration from multiple cultivars of barley (Hordeum vulgare L). J Exp Bot 56:1913–1922. doi:10.1093/jxb/eri186

    Article  PubMed  CAS  Google Scholar 

  • Sparrow PAC, Townsend TM, Arthur AE, Dale PJ, Irwin JA (2004) Genetic analysis of Agrobacterium tumefaciens susceptibility in Brassica oleracea. Theor Appl Genet 108:644–650. doi:10.1007/s00122-033-1473-z

    Article  PubMed  CAS  Google Scholar 

  • Szegedi E, Kozma P (1984) Studies on the inheritance of resistance to crown gall disease of grapevine. Vitis 23:121–126

    Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang MB, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376. doi:10.1046/j.1365-313X.1997.11061369.x

    Article  CAS  Google Scholar 

  • Trifonova A, Madsen S, Olesen A (2001) Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci 161:871–880. doi:10.1016/S0168-9452(01)00479-4

    Article  CAS  Google Scholar 

  • Vashney A, Altpeter F (2001) Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.). Mol Breed 8:295–309. doi:10.1023/A:1015240901016

    Article  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology 10:667–674

    Article  CAS  Google Scholar 

  • Veena HJ, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host gene expression. Plant J 35:219–236. doi:10.1046/j.1365-313X.2003.01796.x

    Article  PubMed  CAS  Google Scholar 

  • Wan YC, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    PubMed  CAS  Google Scholar 

  • Wang M-B, Abbott DC, Upadhyaya NM, Jacobsen JV, Waterhouse PM (2001) Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. Aust J Plant Physiol 28:149–156. doi:10.1071/PP00103

    Google Scholar 

  • Yi HC, Mysore KS, Gelvin SB (2002) Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. Plant J 32:285–298. doi:10.1046/j.1365-313X.2002.01425.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ole Bråd Hansen and Lis Bagnkop Holte for skilful technical assistance. The work was funded by grant 23-02-0019 from the Danish Research Council for Technology and Production Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inger Bæksted Holme.

Additional information

Communicated by W. Harwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holme, I.B., Brinch-Pedersen, H., Lange, M. et al. Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 27, 1833–1840 (2008). https://doi.org/10.1007/s00299-008-0605-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0605-y

Keywords

Navigation