Skip to main content
Log in

Agrobacterium-mediated transformation of the wetland monocot Typha latifolia L. (Broadleaf cattail)

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

An Agrobacterium-mediated model transformation system was standardized for the wetland monocot Typha latifolia L. to achieve the long-term objective of introducing candidate genes for phytoremediation. Two binary plasmid vectors, pCAMBIA1301/EHA105 and pTOK233/LBA4404, both containing the gus (β-glucuronidase) and hptII (hygromycin phosphotransferase II) genes, were used for transformation. Fifty-day-old 5 mg/l picloram-derived calli were cocultivated and selected on medium containing 20 mg/l or 40 mg/l hygromycin. Resistant calli were regenerated on medium supplemented with 5 mg/l 6-benzylaminopurine, with or without 20 mg/l or 40 mg/l hygromycin and with or without charcoal (10 g/l). Transient GUS activity in explants ranged between 28% and 36%. Hygromycin-resistant calli, selected after 3 months, showed stable GUS expression. A total of 46 plants were regenerated and established in the greenhouse; 13 showed stable GUS expression. Cocultivation of dark culture-derived calli, directly selected on regeneration medium containing 20 mg/l hygromycin and rooted on medium with 20 mg/l hygromycin was the best protocol. The addition of charcoal did not have any effect on regeneration. PCR and Southern analyses of transgenic calli and transgenic plants confirmed the presence of the introduced genes. In conclusion, T. latifolia could be genetically transformed by Agrobacterium tumefaciens

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BA:

Benzylaminopurine

35 CaMV:

35S Promoter of the cauliflower mosaic virus

GUS:

β-Glucuronidase

hptII:

Hygromycin phosphotransferase II

MES:

2-(N-Morpholino) ethanesulfonic acid

SDS:

Sodium dodecyl sulphate

X-gluc:

5-Bromo-4-chloro-3-indolyl-β-D-glucuronic acid

References

  • Ainsley PJ, Collins GG, Sedgley M (2001) Factors affecting Agrobacterium-mediated gene transfer and selection of transgenic calli in paper shell almond (Pruns dulcis Mill.). J Hortic Sci Biotechnol 76:522–528

    CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner T, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    CAS  PubMed  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging technology. J Soil Cont 7:415–432

    Google Scholar 

  • Hiei Y, Ohta S, Komiki T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin S, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmid for gene transfer to plants. Transgenic Res 2:208–218

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Karathanasis AD, Johnson CM (2003) Metal removal potential by three aquatic plants in an acid mine drainage wetland. Mine Water Environ 22:22–30

    Article  CAS  Google Scholar 

  • Kumria R, Rajam MV (2002) Alteration in polyamine titres during Agrobacterium-mediated transformation of indica rice with ornithine decarboxylase gene affects plant regeneration potential. Plant Sci 162:769–777

    Article  CAS  Google Scholar 

  • Le QV, Bogusz D, Gherbi H, Lappartient A, Duhoux E, Franche C (1996) Agrobacterium tumefaciens gene transfer to Casurina glauca, a tropical nitrogen-fixing tree. Plant Sci 118:57–69

    Article  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  PubMed  Google Scholar 

  • Mitich LM (2000) Intriguing world of weeds: common cattail, Typha latifolia L. Weed Technol 14:446–450

    Google Scholar 

  • Montoro P, Rattana W, Pujade-Renaud V, Michaux-Ferriere N, Monkolsook Y, Kanthapura R, Adunsadthapong S (2003) Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep 21:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nandakumar R, Chen L, Rogers SMD (2004) Factors affecting the Agrobacterium-mediated transient transformation of the wetland monocot, Typha latifolia. Plant Cell Tissue Organ Cult 79 (in press)

  • Pilon-Smits EAH, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    CAS  Google Scholar 

  • Rogers SMD, Beech J, Sarma KS (1998) Shoot regeneration and plant acclimatization of the wetland monocot Cattail (Typha latifolia). Plant Cell Rep 18:71–75

    Article  Google Scholar 

  • Rogers SMD, Beech J, Sarma KS (2001) Tissue culture and transient gene expression studies in freshwater wetland monocots. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry: transgenic crops III. Springer, Berlin Heidelberg New York, pp 337–351

    Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  PubMed  Google Scholar 

  • Runes HB, Jenkins JJ, Bottomley PJ (2001) Atrazine degradation by bioaugmented sediment from constructed wetlands. Appl Microbiol Biotechnol 57:427–432

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Skousen JG, Sencindiver J (1988) The latest word on wetlands. Green Lands 18:25–27

    Google Scholar 

  • Taylor GJ, Crowder AA (1984) Copper and nickel tolerance in T. latifolia clones from contaminated and uncontaminated environments. Can J Bot 62:1304–1308

    CAS  Google Scholar 

  • Teng WL (1997) Activated charcoal affects morphogenesis and enhances sporophyte regeneration during leaf cell suspension culture of Platycerium bifurcatum. Plant Cell Rep 17:77–83

    Article  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    Article  CAS  PubMed  Google Scholar 

  • Wilson PC, Whitwell T, Klaine SJ (2000) Metalaxyl and simazine toxicity to and uptake by Typha latifolia. Arch Environ Contam Toxicol 39:282–288

    Article  CAS  PubMed  Google Scholar 

  • Ye ZH, Baker AJM, Wong MN, Willis AJ (1997a) Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol 136:469–480

    Article  CAS  Google Scholar 

  • Ye ZH, Baker AJM, Wong MN, Willis AJ (1997b) Copper and nickel uptake, accumulation and tolerance in Typha latifolia with and without iron plaque on the root surface. New Phytol 136:481–488

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NASA WV Space Grant Consortium, WV EPSCoR, the USDA National Research Initiative Award No. 99-35106-8180 and Salem International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne M. D. Rogers.

Additional information

Communicated by G.C. Phillips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandakumar, R., Chen, L. & Rogers, S.M.D. Agrobacterium-mediated transformation of the wetland monocot Typha latifolia L. (Broadleaf cattail). Plant Cell Rep 23, 744–750 (2005). https://doi.org/10.1007/s00299-004-0890-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0890-z

Keywords

Navigation