Skip to main content
Log in

Mitochondria/nuclear signaling of alternative oxidase gene expression occurs through distinct pathways involving organic acids and reactive oxygen species

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Cultured cells of tobacco (Nicotiana tabacum L. cv Petit Havana) were used to investigate signals regulating the expression of the “model” nuclear gene encoding the alternative oxidase (AOX) (AOX1), the terminal oxidase of the mitochondrial alternative respiratory pathway. Several conditions shown to induce AOX1 mRNA accumulation also result in an increase in cellular citrate concentrations, suggesting that citrate and/or other tricarboxylic acid (TCA) cycle intermediates may be important signal metabolites. In addition, mitochondrial reactive oxygen species (ROS) production has recently been shown to be a factor mediating mitochondria-to-nucleus signaling for the expression of AOX1. We found that the exogenously supplied TCA cycle organic acids citrate, malate and 2-oxoglutarate caused rapid and dramatic increases in the steady-state level of AOX1 mRNA at low, near physiological concentrations (0.1 mM). Furthermore, an increase in AOX1 induced by the addition of organic acids occurs independently of mitochondrial ROS formation. Our results demonstrate that two separate pathways for mitochondria-to-nucleus signaling of AOX1 may exist, one involving ROS and the other organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Antimycin A

AOX:

Alternative oxidase

AOX1 :

Nuclear gene encoding alternative oxidase

AP:

Alternative pathway

CP:

Cytochrome pathway

DCF:

Dichlorofluorescein

H2DCF-DA:

2′,7′Dichlorofluorescein diacetate

KCN:

Potassium cyanide

MFA:

Monofluoroacetate

ROS:

Reactive oxygen species

SA:

Salicylic acid

SHAM:

Salicylhydroxamic acid

TCA:

Tricarboxylic acid

TOR:

Target of rampamycin

TTC:

2,3,5-Triphenyltetrazolium chloride

References

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    CAS  PubMed  Google Scholar 

  • Considine MJ, Holtzapffel RC, Day DA, Whelan J, Millar AH (2002) Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol 129:949–953

    Article  CAS  PubMed  Google Scholar 

  • Crespo JL, Powers T, Fowler F, Hall MN (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci USA 99:6784–6789

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, Hebb DM, Ryan PR (2001) Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol 125:2059–2067

    Article  CAS  PubMed  Google Scholar 

  • Djajanegara I, Finnegan PM, Mathieu C, McCabe T, Whelan J, Day DA (2002) Regulation of alternative oxidase gene expression in soybean. Plant Mol Biol 50:735–742

    Article  CAS  PubMed  Google Scholar 

  • Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6:761–772

    Article  CAS  PubMed  Google Scholar 

  • Kato-Noguchi H (1997) Effects of citrate on respiratory gas exchange and metabolism in carrot root tissues. Phytochemistry 45:225–227

    Article  CAS  Google Scholar 

  • Lambers H (1982) Cyanide-resistant respiration: a nonphosphorylating electron transport pathway acting as an energy overflow. Physiol Plant 55:478–485

    CAS  Google Scholar 

  • Liao X, Butow RA (1993) RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72:61–71

    Article  CAS  PubMed  Google Scholar 

  • Liao XS, Small WC, Srere PA, Butow RA (1991) Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol Cell Biol 11:38–46

    CAS  PubMed  Google Scholar 

  • Liu Z, Butow RA (1999) A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol 19:6720–6728

    CAS  PubMed  Google Scholar 

  • Mackenzie S, McIntosh L (1999) Higher plant mitochondria. Plant Cell 11:571–585

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cultures. Proc Natl Acad Sci USA 96:8271–8276

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DP, Nickels R, McIntosh L (2002) Evidence of mitochondrial involvement in the transduction f signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29:269–279

    Article  CAS  PubMed  Google Scholar 

  • McCammon MT, McAlister-Henn L (2003) Multiple cellular consequences of isocitrate dehydrogenase isozyme dysfunction. Arch Biochem Biophys 419:222–233

    Google Scholar 

  • McCammon MT, Epstein CB, Przybyla-Zawislak B, McAlister-Henn L, Butow RA (2003) Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes. Mol Biol Cell 14:958–972

    Google Scholar 

  • McIntosh L (1994) Molecular biology of the alternative oxidase. Plant Physiol 105:781–786

    Article  CAS  PubMed  Google Scholar 

  • McIntosh L, Eichler T, Gray GR, Maxwell D, Nickels R, Wang Y (1998) Biochemical and genetic controls exerted by plant mitochondria. Biochim Biophys Acta 1365:278–284

    Article  CAS  Google Scholar 

  • Millar H, Considine MJ, Day DA, Whelan J (2001) Unraveling the role of mitochondria during oxidative stress in plants. IUBMB Life 51:201–205

    CAS  PubMed  Google Scholar 

  • Mills AR, Lee JM (1996) A simple, accurate method for determining wet and dry weight concentrations of plant cell suspension cultures using microcentrifuge tubes. Plant Cell Rep 15:634–636

    Article  CAS  Google Scholar 

  • Minagawa N, Koga S, Nakano M, Sakajo S, Yoshimoto A (1992) Possible involvement of superoxide anion in the induction of cyanide-resistant respiration in Hansenula anomala. FEBS Lett 302:217–219

    Article  CAS  PubMed  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Nath KA, Ngo EO, Hebbel RP, Croatt AJ, Zhou B, Nutter LM (1995) Alpha-keto acids scavenge H2O2 in vitro and in vivo and reduce menadione-induced DNA injury and cytotoxicity. Am J Physiol 268:C227–C236

    CAS  PubMed  Google Scholar 

  • Norman C, Howell KA, Millar AH, Whelan JM, Day DA (2004) Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiol 134:492–501

    Article  CAS  PubMed  Google Scholar 

  • Pastore D, Laus MN, Di Fonzo N, Passarella S (2002) Reactive oxygen species inhibit the succinate oxidation-supported generation of membrane potential in wheat mitochondria. FEBS Lett 516:15–19

    Article  CAS  PubMed  Google Scholar 

  • Purvis AC (1997) Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol Plant 100:165–170

    Article  CAS  Google Scholar 

  • Purvis AC (2001) Reduction of superoxide production by mitochondria oxidizing NADH in the presence of organic acids. J Plant Physiol 158:159–165

    CAS  Google Scholar 

  • Purvis AC, Shewfelt RL (1993) Does the alternative pathway ameliorate chilling injury in sensitive plant tissues? Physiol Plant 88:712–718

    Article  CAS  Google Scholar 

  • Quastel JH (1963) Inhibitions in the citric acid cycle. In: Hochester RM, Quastel JH (eds) Metabolic inhibitors: a comprehensive treatise, vol 2. Academic Press, New York, pp 473–502

    Google Scholar 

  • Rhoads DM, McIntosh L (1992) Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell 4:1131–1139

    Article  CAS  PubMed  Google Scholar 

  • Ruffer M, Steipe B, Zenk MH (1995) Evidence against specific binding of salicylic acid to plant catalase. FEBS Lett 377:175–180

    Article  CAS  PubMed  Google Scholar 

  • Saisho D, Nakazono M, Tsutsumi N, Hirai A (2001) ATP synthesis inhibitors as well as respiratory inhibitors increase steady-state level alternative oxidase mRNA in Arabidopsis thaliana. J Plant Physiol 158:241–245

    CAS  Google Scholar 

  • Scheible W-R, González-Fontes A, Lauerer M, Müller-Röber B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    Article  CAS  PubMed  Google Scholar 

  • Sheen J (1994) Feedback control of gene expression. Photosynth Res 39:427–438

    CAS  Google Scholar 

  • Siedow JN, Umbach AL (1995) Plant mitochondrial electron transfer and molecular biology. Plant Cell 7:821–831

    Article  CAS  PubMed  Google Scholar 

  • Thirkettle-Watts D, McCabe TC, Clifton R, Moore C, Finnegan PM, Day DA, Whelan J (2003) Analysis of the alternative oxidase promoters from soybean. Plant Physiol 133:1158–1169

    Article  CAS  PubMed  Google Scholar 

  • Thomas BR, Rodriquez RL (1994) Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiol 106:1235–1239

    CAS  PubMed  Google Scholar 

  • Towil LE, Mazur P (1975) Studies on the reduction of 2,3,5-triphenyltetrazolium chloride as a viability assay for plant tissue culture. Can J Bot 53:1097–1102

    Google Scholar 

  • Umbach AL, Siedow JN (1993) Covalent and noncovalent dimers of the cyanide-resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol 103:845–854

    CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1992a) Coordinate regulation of cytochrome and alternative pathway respiration in tobacco. Plant Physiol 100:1846–1851

    CAS  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1992b) Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol 100:115–119

    CAS  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1994) Mitochondrial electron transport regulation of nuclear gene expression: studies with the alternative oxidase gene of tobacco. Plant Physiol 105:867–874

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1996) Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria. Plant Physiol 111:589–595

    CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, Day DA, Wiskich JT, Vanlerberghe AE, McIntosh L (1995) Alternative oxidase activity in tobacco leaf mitochondria: dependence on tricarboxylic acid cycle-mediated redox regulation and pyruvate activation. Plant Physiol 109:353–361

    CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, McIntosh L, Yip JYH (1998) Molecular localization of a redox-modulated process regulating plant mitochondrial electron transport. Plant Cell 10:1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, Robson CA, Yip JYH (2002) Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death. Plant Physiol 129:1829–1842

    Article  CAS  PubMed  Google Scholar 

  • Varma SD, Devamanoharan PS, Morris SM (1995) Prevention of cataracts by nutritional and metabolic antioxidants. Crit Rev Food Sci Nutr 35:111–129

    CAS  PubMed  Google Scholar 

  • Verniquet F, Gaillard J, Neuburger M, Douce R (1991) Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem J 276:643–648

    CAS  PubMed  Google Scholar 

  • Wagner AM, Krab K (1995) The alternative respiration pathway in plants: role and regulation. Physiol Plant 95:318–325

    Article  CAS  Google Scholar 

  • Wagner AM, Moore AL (1997) Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism. Biosci Rep 17:319–333

    Article  CAS  PubMed  Google Scholar 

  • Whelan J, Millar AH, Day DA (1996) The alternative oxidase is encoded in a multigene family in soybean. Planta 198:197–201

    CAS  PubMed  Google Scholar 

  • Zhang Q, Moore CS, Soole KL, Wiskich JT (2003) Over-reduction of cultured tobacco cells mediates changes in respiratory activities. Physiol Plant 119:183–191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Roxy L. Nickels for technical assistance. This research was supported, in part, by a United States Department of Energy grant DEFG0291ER20021 and National Science Foundation grant IBM 0110768. G. R. G. was supported, in part, by a postdoctoral fellowship and research grant from the Natural Sciences and Engineering Research Council of Canada (NSERC). A. R. V. acknowledges support from the Ronald E. McNair Post-Baccalaureate Achievement Program at Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Gray.

Additional information

Communicated by H. Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, G.R., Maxwell, D.P., Villarimo, A.R. et al. Mitochondria/nuclear signaling of alternative oxidase gene expression occurs through distinct pathways involving organic acids and reactive oxygen species. Plant Cell Rep 23, 497–503 (2004). https://doi.org/10.1007/s00299-004-0848-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0848-1

Keywords

Navigation