Skip to main content

Advertisement

Log in

Profile of circulating microRNAs in fibromyalgia and their relation to symptom severity: an exploratory study

  • Original Article - Genes and Disease
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Fibromyalgia (FM) is characterized by generalized chronic pain and reduced pain thresholds. Disturbed neuroendocrine function and impairment of growth hormone/insulin-like growth factor-1 is common. However, the pathophysiology of FM is not clear. MicroRNAs are important regulatory factors reflecting interface of genes and environment. Our aim was to identify characteristic microRNAs in FM and relations of specific microRNAs with characteristic symptoms. A total of 374 circulating microRNAs were measured in women with FM (n = 20; median 52.5 years) and healthy women (n = 20; 52.5 years) by quantitative PCR. Pain thresholds were examined by algometry. Pain [fibromyalgia impact questionnaire (FIQ) pain] levels were rated (0–100 mm) using FIQ. Fatigue (FIQ fatigue) was rated (0–100 mm) using FIQ and multidimensional fatigue inventory general fatigue. Sleep quantity and quality (1–4) rated from satisfactory to nonsatisfactory. Higher scores indicate more severe symptoms. Eight microRNAs differed significantly between FM and healthy women. Seven microRNAs, miR-103a-3p, miR-107, let-7a-5p, miR-30b-5p, miR-151a-5p, miR-142-3p and miR-374b-5p, were lower in FM. However, levels of miR-320a were higher in FM. MiR-103a-3p correlated with pain (r = 0.530, p = 0.016) and sleep quantity (r = 0.593, p = 0.006) in FM. MiR-320a correlated inversely with pain (r = −0.468, p = 0.037). MiR-374b-5p correlated inversely with pain threshold (r = −0.612, p = 0.004). MiR-30b-5p correlated with sleep quantity (r = 0.509, p = 0.022), and let-7a-5p was associated with sleep symptoms. When adjusted for body mass index, the correlation of sleep quantity with miR-103a and miR-30b was no longer significant. To our knowledge, this is the first study of circulating microRNAs in FM. Levels of several microRNAs differed significantly in FM compared to healthy women. Three microRNAs were associated with pain or pain threshold in FM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FM:

Fibromyalgia syndrome

FIQ:

Fibromyalgia impact questionnaire

MFI-20:

Multidimensional fatigue inventory

MFIGF:

Multidimensional fatigue inventory, subscale of general fatigue

BMI:

Body mass index

References

  1. Bennett RM (2002) Adult growth hormone deficiency in patients with fibromyalgia. Curr Rheumatol Rep 4(4):306–312

    Article  PubMed  Google Scholar 

  2. Bennett RM, Cook DM, Clark SR, Burckhardt CS, Campbell SM (1997) Hypothalamic-pituitary-insulin-like growth factor-I axis dysfunction in patients with fibromyalgia. J Rheumatol 24(7):1384–1389

    CAS  PubMed  Google Scholar 

  3. Bjersing JL, Dehlin M, Erlandsson M, Bokarewa MI, Mannerkorpi K (2012) Changes in pain and insulin-like growth factor 1 in fibromyalgia during exercise: the involvement of cerebrospinal inflammatory factors and neuropeptides. Arthritis Res Ther 14(4):R162. doi:10.1186/ar3902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bjersing JL, Erlandsson M, Bokarewa MI, Mannerkorpi K (2013) Exercise and obesity in fibromyalgia. Beneficial roles of insulin-like growth factor 1 and resistin? Arthritis Res Ther 15:R34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Theadom A, Cropley M, Humphrey KL (2007) Exploring the role of sleep and coping in quality of life in fibromyalgia. J Psychosom Res 62(2):145–151. doi:10.1016/j.jpsychores.2006.09.013

    Article  PubMed  Google Scholar 

  6. Paul-Savoie E, Marchand S, Morin M, Bourgault P, Brissette N, Rattanavong V, Cloutier C, Bissonnette A, Potvin S (2012) Is the deficit in pain inhibition in fibromyalgia influenced by sleep impairments? Open Rheumatol J 6:296–302. doi:10.2174/1874312901206010296

    Article  PubMed Central  PubMed  Google Scholar 

  7. Arnold LM, Hudson JI, Hess EV, Ware AE, Fritz DA, Auchenbach MB, Starck LO, Keck PE Jr (2004) Family study of fibromyalgia. Arthritis Rheum 50(3):944–952. doi:10.1002/art.20042

    Article  PubMed  Google Scholar 

  8. Markkula R, Jarvinen P, Leino-Arjas P, Koskenvuo M, Kalso E, Kaprio J (2009) Clustering of symptoms associated with fibromyalgia in a Finnish Twin Cohort. Eur J Pain 13(7):744–750. doi:10.1016/j.ejpain.2008.09.007

    Article  PubMed  Google Scholar 

  9. Lee YH, Choi SJ, Ji JD, Song GG (2012) Candidate gene studies of fibromyalgia: a systematic review and meta-analysis. Rheumatol Int 32(2):417–426. doi:10.1007/s00296-010-1678-9

    Article  CAS  PubMed  Google Scholar 

  10. Smith SB, Maixner DW, Fillingim RB, Slade G, Gracely RH, Ambrose K, Zaykin DV, Hyde C, John S, Tan K, Maixner W, Diatchenko L (2012) Large candidate gene association study reveals genetic risk factors and therapeutic targets for fibromyalgia. Arthritis Rheum 64(2):584–593. doi:10.1002/art.33338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Denk F, McMahon SB (2012) Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 73(3):435–444. doi:10.1016/j.neuron.2012.01.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. doi:10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  13. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71. doi:10.1038/nature07242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhu H, Fan GC (2011) Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis 1(2):138–149

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Rayner KJ, Hennessy EJ (2013) Extracellular communication via microRNA: lipid Particles have a new message. J Lipid Res. doi:10.1194/jlr.R034991

    Google Scholar 

  16. Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93(1):98–104. doi:10.1038/clpt.2012.192

    Article  CAS  PubMed  Google Scholar 

  17. van Rooij E, Olson EN (2012) MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discovery 11(11):860–872. doi:10.1038/nrd3864

    Article  Google Scholar 

  18. Bjersing JL, Lundborg C, Bokarewa MI, Mannerkorpi K (2013) Profile of Cerebrospinal microRNAs in Fibromyalgia. PLoS One 8(10):e78762. doi:10.1371/journal.pone.0078762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Mannerkorpi K, Nordeman L, Cider A, Jonsson G (2010) Does moderate-to-high intensity Nordic walking improve functional capacity and pain in fibromyalgia? A prospective randomized controlled trial. Arthritis Res Ther 12(5):R189. doi:10.1186/ar3159

    Article  PubMed Central  PubMed  Google Scholar 

  20. Wolfe F, Smythe HA, Yunus MB, Bennett RM, Bombardier C, Goldenberg DL, Tugwell P, Campbell SM, Abeles M, Clark P et al (1990) The American college of rheumatology 1990 criteria for the classification of fibromyalgia. Report of the multicenter criteria committee. Arthritis Rheum 33(2):160–172

    Article  CAS  PubMed  Google Scholar 

  21. Caman OK, Calling S, Midlov P, Sundquist J, Sundquist K, Johansson SE (2013) Longitudinal age-and cohort trends in body mass index in Sweden: a 24-year follow-up study. BMC Public Health 13:893. doi:10.1186/1471-2458-13-893

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kosek E, Ekholm J, Nordemar R (1993) A comparison of pressure pain thresholds in different tissues and body regions. Long-term reliability of pressure algometry in healthy volunteers. Scand J Rehabil Med 25(3):117–124

    CAS  PubMed  Google Scholar 

  23. Burckhardt CS, Clark SR, Bennett RM (1991) The fibromyalgia impact questionnaire: development and validation. J Rheumatol 18(5):728–733

    CAS  PubMed  Google Scholar 

  24. Ericsson A, Mannerkorpi K (2007) Assessment of fatigue in patients with fibromyalgia and chronic widespread pain. Reliability and validity of the Swedish version of the MFI-20. Disabil Rehabil 29(22):1665–1670. doi:10.1080/09638280601055782

    Article  PubMed  Google Scholar 

  25. Akerstedt T, Knutsson A, Westerholm P, Theorell T, Alfredsson L, Kecklund G (2002) Sleep disturbances, work stress and work hours: a cross-sectional study. J Psychosom Res 53(3):741–748

    Article  CAS  PubMed  Google Scholar 

  26. Jensen SG, Lamy P, Rasmussen MH, Ostenfeld MS, Dyrskjot L, Orntoft TF, Andersen CL (2011) Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genom 12:435. doi:10.1186/1471-2164-12-435

    Article  CAS  Google Scholar 

  27. Qiu X, Wu H, Hu R (2013) The impact of quantile and rank normalization procedures on the testing power of gene differential expression analysis. BMC Bioinformatics 14(1):124. doi:10.1186/1471-2105-14-124

    Article  PubMed Central  PubMed  Google Scholar 

  28. White RE, Giffard RG (2012) MicroRNA-320 induces neurite outgrowth by targeting ARPP-19. NeuroReport 23(10):590–595. doi:10.1097/WNR.0b013e3283540394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sanchez Freire V, Burkhard FC, Kessler TM, Kuhn A, Draeger A, Monastyrskaya K (2010) MicroRNAs may mediate the down-regulation of neurokinin-1 receptor in chronic bladder pain syndrome. Am J Pathol 176(1):288–303. doi:10.2353/ajpath.2010.090552

    Article  PubMed Central  PubMed  Google Scholar 

  30. Orlova IA, Alexander GM, Qureshi RA, Sacan A, Graziano A, Barrett JE, Schwartzman RJ, Ajit SK (2011) MicroRNA modulation in complex regional pain syndrome. J Transl Med 9:195. doi:10.1186/1479-5876-9-195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18(10):505–516. doi:10.1016/j.tcb.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  32. Nair VS, Maeda LS, Ioannidis JP (2012) Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst 104(7):528–540. doi:10.1093/jnci/djs027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. He Y, Yang C, Kirkmire CM, Wang ZJ (2010) Regulation of opioid tolerance by let-7 family microRNA targeting the mu opioid receptor. J Neurosci 30(30):10251–10258. doi:10.1523/JNEUROSCI.2419-10.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tobon KE, Chang D, Kuzhikandathil EV (2012) MicroRNA 142-3p mediates post-transcriptional regulation of D1 dopamine receptor expression. PLoS One 7(11):e49288. doi:10.1371/journal.pone.0049288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tan X, Zhang P, Zhou L, Yin B, Pan H, Peng X (2012) Clock-controlled mir-142-3p can target its activator, Bmal1. BMC Mol Biol 13:27. doi:10.1186/1471-2199-13-27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Tanaka M, Yamaguchi E, Takahashi M, Hashimura K, Shibata T, Nakamura W, Nakamura TJ (2012) Effects of age-related dopaminergic neuron loss in the substantia nigra on the circadian rhythms of locomotor activity in mice. Neurosci Res 74(3–4):210–215. doi:10.1016/j.neures.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  37. Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, Trube G, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci USA 108(20):8485–8490. doi:10.1073/pnas.1103029108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ablin JN, Bar-Shira A, Yaron M, Orr-Urtreger A (2009) Candidate-gene approach in fibromyalgia syndrome: association analysis of the genes encoding substance P receptor, dopamine transporter and alpha1-antitrypsin. Clin Exp Rheumatol 27(5 Suppl 56):S33–S38

    CAS  PubMed  Google Scholar 

  39. Potvin S, Larouche A, Normand E, de Souza JB, Gaumond I, Grignon S, Marchand S (2009) DRD3 Ser9Gly polymorphism is related to thermal pain perception and modulation in chronic widespread pain patients and healthy controls. J Pain 10(9):969–975. doi:10.1016/j.jpain.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  40. Buskila D, Cohen H, Neumann L, Ebstein RP (2004) An association between fibromyalgia and the dopamine D4 receptor exon III repeat polymorphism and relationship to novelty seeking personality traits. Mol Psychiatry 9(8):730–731. doi:10.1038/sj.mp.4001506

    Article  CAS  PubMed  Google Scholar 

  41. Finnerty JR, Wang WX, Hebert SS, Wilfred BR, Mao G, Nelson PT (2010) The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol 402(3):491–509. doi:10.1016/j.jmb.2010.07.051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Yu D, Zhou H, Xun Q, Xu X, Ling J, Hu Y (2012) microRNA-103 regulates the growth and invasion of endometrial cancer cells through the downregulation of tissue inhibitor of metalloproteinase 3. Oncol Lett 3(6):1221–1226. doi:10.3892/ol.2012.638

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474(7353):649–653. doi:10.1038/nature10112

    Article  CAS  PubMed  Google Scholar 

  44. Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers ME, Grew JP, Randall JC, Gloyn AL, Gauguier D, McCarthy MI, Lindgren CM (2010) Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53(6):1099–1109. doi:10.1007/s00125-010-1667-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Foley NH, O’Neill LA (2012) miR-107: a toll-like receptor-regulated miRNA dysregulated in obesity and type II diabetes. J Leukoc Biol 92(3):521–527. doi:10.1189/jlb.0312160

    Article  CAS  PubMed  Google Scholar 

  46. Pan S, Zheng Y, Zhao R, Yang X (2013) miRNA-374 regulates dexamethasone-induced differentiation of primary cultures of porcine adipocytes. Hormone and metabolic research = Hormon-und Stoffwechselforschung = Hormones et metabolisme. doi:10.1055/s-0033-1334896

  47. Noren Hooten N, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK (2010) microRNA expression patterns reveal differential expression of target genes with age. PLoS One 5(5):e10724. doi:10.1371/journal.pone.0010724

    Article  PubMed Central  PubMed  Google Scholar 

  48. Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121(2):193–205. doi:10.1007/s00401-010-0756-0

    Article  PubMed Central  PubMed  Google Scholar 

  49. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28(5):1213–1223. doi:10.1523/JNEUROSCI.5065-07.2008

    Article  PubMed Central  PubMed  Google Scholar 

  50. Brenu EW, Ashton KJ, van Driel M, Staines DR, Peterson D, Atkinson GM, Marshall-Gradisnik SM (2012) Cytotoxic lymphocyte microRNAs as prospective biomarkers for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J Affect Disord 141(2–3):261–269. doi:10.1016/j.jad.2012.03.037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Lena Nordeman, Åsa Cider, Gunilla Jonsson, Annie Palstam and members of the GAU-study group for recruiting, examining or supervising the subjects. This work has been funded by grants from the Swedish Research Council, the Medical Society of Göteborg, the Swedish Rheumatism Association, the King Gustaf V:s 80-year Foundation, the Wilhelm and Martina Lundgrens Foundation, the Foundation to the Memory of Sigurd and Elsa Golje, Rune and Ulla Amlövs Trust, the University of Göteborg, the Regional agreement on medical training and clinical research between the Western Götaland county council and the University of Göteborg (LUA/ALF), the Health and Medical Care Executive Board of Västra Götaland Region. The funding sources have no involvement in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan L. Bjersing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjersing, J.L., Bokarewa, M.I. & Mannerkorpi, K. Profile of circulating microRNAs in fibromyalgia and their relation to symptom severity: an exploratory study. Rheumatol Int 35, 635–642 (2015). https://doi.org/10.1007/s00296-014-3139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-014-3139-3

Keywords

Navigation