Skip to main content

Advertisement

Log in

The genetics of Henoch–Schönlein purpura: a systematic review and meta-analysis

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Henoch–Schönlein purpura (HSP) is the most common form of systemic vasculitis of unknown etiology. This study aimed at reviewing published studies investigating the association of genetic polymorphisms with HSP and its severity. We systematically reviewed all published data on genetic risk factors for HSP by searching MEDLINE. We also performed a meta-analysis of association studies of HLA-DRB1-01, 07, and 11, angiotensin I-converting enzyme (ACE) insertion/deletion (I/D) polymorphism. We identified 45 studies investigating polymorphisms in 39 genes in association with HSP and/or its severity. Most of these genes are involved in immunological and/or inflammatory responses or vasomotor regulation. Most results were negative. The most convincing finding is the association of HLA-DRB1*01, 07, and 11 with HSP susceptibility. The overall odds ratios (ORs) for the three loci were significant for HSP: HLA-DRB1*01 (OR = 1.805, 95 % CI 1.259–2.588, p = 0.0012); HLA-DRB1*07 (OR = 0.671, 95 % CI 0.469–0.961, p = 0.058); HLA-DRB1*11 (OR = 2.001, 95 % CI 1.50–2.67, p = 0.027). Genetic regulation of endothelial function, such as polymorphisms in genes coding rennin–angiotensin system (RAS) components, endothelial nitric oxide synthases, Inter-Cellular Adhesion Molecule 1, and vascular endothelial growth factor, could also confer effect on HSP. In addition, MEFV, whose mutations cause familial Mediterranean fever, could be an important candidate gene for HSP. Further large studies are required to investigate the association between genetic polymorphisms and HSP. Alternative approaches, such as genome-wide association study, are necessary to help to identify genetic risks for HSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gardner-Medwin JM, Dolezalova P, Cummins C, Southwood TR (2002) Incidence of Henoch–Schönlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet 360:1197–1202

    Article  PubMed  Google Scholar 

  2. Yang YH, Hung CF, Hsu CR et al (2005) A nationwide survey on epidemiological characteristics of childhood Henoch–Schönlein purpura in Taiwan. Rheumatology (Oxford) 44:618–622

    Article  Google Scholar 

  3. Brogan PA (2007) What’s new in the aetiopathogenesis of vasculitis? Pediatr Nephrol 22:1083–1094

    Article  PubMed  Google Scholar 

  4. Zhang Y, Gu W, Mao J (2008) Sibling cases of Henoch-Schonlein purpura in two families and review of literature. Pediatr Dermatol 25:393–395

    Article  PubMed  Google Scholar 

  5. Balbir-Gurman A, Nahir AM, Braun-Moscovici Y (2007) Vasculitis in siblings with familial Mediterranean fever: a report of three cases and review of the literature. Clin Rheumatol 26:1183–1185

    Article  PubMed  Google Scholar 

  6. Monach PA, Merkel PA (2010) Genetics of vasculitis. Curr Opin Rheumatol 22:157–163

    Article  PubMed  Google Scholar 

  7. Dillon MJ (2007) Henoch–Schönlein purpura: recent advances. Clin Exp Rheumatol 25:S66–S68

    CAS  PubMed  Google Scholar 

  8. Amoli MM, Alansari A, El-Magadmi M et al (2002) Lack of association between A561C E-selectin polymorphism and large and small-sized blood vessel vasculitides. Clin Exp Rheumatol 20:575–576

    CAS  PubMed  Google Scholar 

  9. Amoli MM, Calviño MC, Garcia-Porrua C, Llorca J, Ollier WE, Gonzalez-Gay MA (2004) Interleukin 1beta gene polymorphism association with severe renal manifestations and renal sequelae in Henoch–Schönlein purpura. J Rheumatol 31:295–298

    CAS  PubMed  Google Scholar 

  10. Amoli MM, Garcia-Porrua C, Calviño MC, Ollier WE, Gonzalez-Gay MA (2004) Lack of association between endothelial nitric oxide synthase polymorphisms and Henoch–Schönlein purpura. J Rheumatol 31:299–301

    CAS  PubMed  Google Scholar 

  11. Amoli MM, Martin J, Miranda-Filloy JA, Garcia-Porrua C, Ollier WE, Gonzalez-Gay MA (2007) Lack of association between interleukin-6 promoter polymorphism at position −174 and Henoch–Schönlein pur pura. Clin Exp Rheumatol 25:S6–S9

    CAS  PubMed  Google Scholar 

  12. Amoli MM, Martin J, Miranda-Filloy JA, Garcia-Porrua C, Ollier WE, Gonzalez-Gay MA (2006) Lack of association between macrophage migration inhibitory factor gene (−173 G/C) polymorphism and cutaneous vasculitis. Clin Exp Rheumatol 24:576–579

    CAS  PubMed  Google Scholar 

  13. Amoli MM, Mattey DL, Calviño MC (2001) et al Polymorphism at codon 469 of the intercellular adhesion molecule-1 locus is associated with protection against severe gastrointestinal complications in Henoch–Schönlein purpura. J Rheumatol 28:1014–1018

    CAS  PubMed  Google Scholar 

  14. Amoli MM, Thomson W, Hajeer AH et al (2002) Henoch–Schönlein purpura and cutaneous leukocytoclastic angiitis exhibit different HLA-DRB1 associations. J Rheumatol 29:945–947

    PubMed  Google Scholar 

  15. Amoli MM, Thomson W, Hajeer AH et al (2002) HLA-B35 association with nephritis in Henoch–Schönlein purpura. J Rheumatol 29:948–949

    PubMed  Google Scholar 

  16. Amoli MM, Thomson W, Hajeer AH et al (2002) Interleukin 8 gene polymorphism is associated with increased risk of nephritis in cutaneous vasculitis. J Rheumatol 29:2367–2370

    CAS  PubMed  Google Scholar 

  17. Amoli MM, Thomson W, Hajeer AH et al (2002) Interleukin 1 receptor antagonist gene polymorphism is associated with severe renal involvement and renal sequelae in Henoch–Schönlein purpura. J Rheumatol 29:1404–1407

    CAS  PubMed  Google Scholar 

  18. Amoroso A, Berrino M, Canale L et al (1997) Immunogenetics of Henoch-Schoenlein disease. Eur J Immunogenet 24:323–333

    Article  CAS  PubMed  Google Scholar 

  19. Amoroso A, Danek G, Vatta S et al (1998) Polymorphisms in angiotensin-converting enzyme gene and severity of renal disease in Henoch-Schoenlein patients. Italian Group of Renal Immunopathology. Nephrol Dial Transpl 13:3184–3188

    Article  CAS  Google Scholar 

  20. Dudley J, Afifi E, Gardner A, Tizard EJ, McGraw ME (2000) Polymorphism of the ACE gene in Henoch–Schönlein purpura nephritis. Pediatr Nephrol 14:218–220

    Article  CAS  PubMed  Google Scholar 

  21. Eisenstein EM, Choi M (2006) Analysis of an uteroglobin gene polymorphism in childhood Henoch-Schonlein purpura. Pediatr Nephrol 21:782–784

    Article  PubMed  Google Scholar 

  22. Dagan E, Brik R, Broza Y, Gershoni-Baruch R (2006) Henoch-Schonlein purpura: polymorphisms in thrombophilia genes. Pediatr Nephrol 21:1117–1121

    Article  PubMed  Google Scholar 

  23. Emre S, Sirin A, Ergen A et al (2011) Methylenetetrahydrofolate reductase C677T polymorphism in patients with Henoch–Schönlein purpura. Pediatr Int 53:358–362

    Article  CAS  PubMed  Google Scholar 

  24. He X, Lu H, Kang S et al (2010) MEFV E148Q polymorphism is associated with Henoch–Schönlein purpura in Chinese children. Pediatr Nephrol 25:2077–2082

    Article  PubMed  Google Scholar 

  25. Jin DK, Kohsaka T, Koo JW, Ha IS, Cheong HI, Choi Y (1996) Complement 4 locus II gene deletion and DQA1*0301 gene: genetic risk factors for IgA nephropathy and Henoch–Schönlein nephritis. Nephron 73:390–395

    Article  CAS  PubMed  Google Scholar 

  26. Liu D, Lu F, Zhai S et al (2010) Renin-angiotensin system gene polymorphisms in children with Henoch-Schonlein purpura in West China. J Renin Angiotensin Aldosterone Syst 11:248–255

    Article  CAS  Google Scholar 

  27. Liu ZH, Cheng ZH, Yu YS, Tang Z, Li LS (1997) Interleukin-1 receptor antagonist allele: is it a genetic link between Henoch–Schönlein nephritis and IgA nephropathy? Kidney Int 51:1938–1942

    Article  CAS  PubMed  Google Scholar 

  28. Martin J, Paco L, Ruiz MP et al (2005) Inducible nitric oxide synthase polymorphism is associated with susceptibility to Henoch–Schönlein purpura in northwestern Spain. J Rheumatol 32:1081–1085

    CAS  PubMed  Google Scholar 

  29. Orozco G, Miranda-Filloy JA, Martin J, Gonzalez-Gay MA (2007) Lack of association of a functional single nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with susceptibility to Henoch–Schönlein purpura. Clin Exp Rheumatol 25:750–753

    CAS  PubMed  Google Scholar 

  30. Ozkaya O, Söylemezoğlu O, Gönen S et al (2006) Renin-angiotensin system gene polymorphisms: association with susceptibility to Henoch-Schonlein purpura and renal involvement. Clin Rheumatol 25:861–865

    Article  PubMed  Google Scholar 

  31. Peru H, Soylemezoglu O, Gonen S et al (2008) HLA class 1 associations in Henoch-Schonlein purpura: increased and decreased frequencies. Clin Rheumatol 27:5–10

    Article  PubMed  Google Scholar 

  32. Rueda B, Perez-Armengol C, Lopez-Lopez S, Garcia-Porrua C, Martín J, Gonzalez-Gay MA (2006) Association between functional haplotypes of vascular endothelial growth factor and renal complications in Henoch–Schönlein purpura. J Rheumatol 33:69–73

    CAS  PubMed  Google Scholar 

  33. Soylemezoglu O, Peru H, Gonen S et al (2008) CTLA-4 +49 A/G genotype and HLA-DRB1 polymorphisms in Turkish patients with Henoch–Schönlein purpura. Pediatr Nephrol 23:1239–1244

    Article  PubMed  Google Scholar 

  34. Soylu A, Kizildağ S, Kavukçu S et al (2010) TLR-2 Arg753Gln, TLR-4 Asp299Gly, and TLR-4 Thr399Ile polymorphisms in Henoch Schonlein purpura with and without renal involvement. Rheumatol Int 30:667–670

    Article  CAS  PubMed  Google Scholar 

  35. Stefansson Thors V, Kolka R, Sigurdardottir SL, Edvardsson VO, Arason G, Haraldsson A (2005) Increased frequency of C4B*Q0 alleles in patients with Henoch–Schönlein purpura. Scand J Immunol 61:274–278

    Article  CAS  PubMed  Google Scholar 

  36. Torres O, Palomino-Morales R, Miranda-Filloy JA, Vazquez-Rodriguez TR, Martin J, Gonzalez-Gay MA (2010) IL-18 gene polymorphisms in Henoch–Schönlein purpura. Clin Exp Rheumatol 28:114

    PubMed  Google Scholar 

  37. Torres O, Palomino-Morales R, Miranda-Filloy JA, Vazquez-Rodriguez TR, Martin J, Gonzalez-Gay MA (2010) Lack of association between toll-like receptor 4 gene polymorphism and Henoch–Schönlein purpura. Clin Exp Rheumatol 28:110

    PubMed  Google Scholar 

  38. Yang YH, Lai HJ, Kao CK, Lin YT, Chiang BL (2004) The association between transforming growth factor-beta gene promoter C-509T polymorphism and Chinese children with Henoch–Schönlein purpura. Pediatr Nephrol 19:972–975

    Article  PubMed  Google Scholar 

  39. Yi Z, Fang X, Wu X et al (2006) Role of PAX2 gene polymorphisms in Henoch-Schonlein purpura nephritis. Nephrology (Carlton) 11:42–48

    Article  CAS  Google Scholar 

  40. Yilmaz A, Emre S, Agachan B et al (2009) Effect of paraoxonase 1 gene polymorphisms on clinical course of Henoch–Schönlein purpura. J Nephrol 22:726–732

    PubMed  Google Scholar 

  41. Zeng HS, Xiong XY, Chen YY, Luo XP (2009) Gene polymorphism of vascular endothelial growth factor in children with Henoch-Schonlein purpura nephritis. Zhongguo Dang Dai Er Ke Za Zhi 11:417–421

    CAS  PubMed  Google Scholar 

  42. Zhang Y, Xudong X, Du L et al (2007) Lack of association between NPHS2 gene polymorphisms and Henoch–Schönlein purpura nephritis. Arch Dermatol Res 299:151–155

    Article  CAS  PubMed  Google Scholar 

  43. Zhou J, Tian X, Xu Q (2004) Angiotensin-converting enzyme gene insertion/deletion polymorphism in children with Henoch-Schonlein purpua nephritis. Huazhong Univ Sci Technolog Med Sci 24:158–161

    Article  CAS  Google Scholar 

  44. He X, Zhao P, Kang S, Ding Y, Luan J, Liu Z, Wu Y, Yin W (2012) C1GALT1 polymorphisms are associated with Henoch–Schönlein purpura nephritis. Pediatr Nephrol 27:1505–1509

    Article  PubMed  Google Scholar 

  45. He X, Li Y, Kang S, Luan J, Wu Y, Liu Z, Yin W (2011) The CD18 AvaII polymorphic site not associated with Henoch–Schönlein purpura. Clin Exp Rheumatol 29(1 Suppl 64):S117–S120

    PubMed  Google Scholar 

  46. Emre S, Sirin A, Ergen A, Bilge I, Sucu A, Yilmaz A, Isbir T (2011) Methylenetetrahydrofolate reductase C677T polymorphism in patients with Henoch–Schönlein purpura. Pediatr Int 53:358–362

    Article  CAS  PubMed  Google Scholar 

  47. Yoshioka T, Xu YX, Yoshida H, Shiraga H, Muraki T, Ito K (1998) Deletion polymorphism of the angiotensin converting enzyme gene predicts persistent proteinuria in Henoch–Schönlein purpura nephritis. Arch Dis Child 79:394–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bayram C, Demircin G, Erdoğan O, Bülbül M, Caltik A, Akyüz SG (2011) Prevalence of MEFV gene mutations and their clinical correlations in Turkish children with Henoch–Schönlein purpura. Acta Paediatr 100(5):745–749

    Article  CAS  PubMed  Google Scholar 

  49. Gershoni-Baruch R, Broza Y, Brik R (2003) Prevalence and significance of mutations in the familial Mediterranean fever gene in Henoch–Schönlein purpura. J Pediatr 143:658–661

    Article  CAS  PubMed  Google Scholar 

  50. Ozçakar ZB, Yalçinkaya F, Cakar N et al (2008) MEFV mutations modify the clinical presentation of Henoch–Schönlein purpura. J Rheumatol 35:2427–2429

    Article  PubMed  Google Scholar 

  51. Dogan CS, Akman S, Koyun M, Bilgen T, Comak E, Gokceoglu AU (2012) Prevalence and significance of the MEFV gene mutations in childhood Henoch–Schönlein purpura without FMF symptoms. Rheumatol Int [Epub ahead of print]

  52. Burgner D, Davila S, Breunis WB et al (2009) A genome-wide association study identifies novel and functionally related susceptibility Loci for Kawasaki disease. PLoS Genet 5(1):e1000319

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fei Y, Webb R, Cobb BL et al (2009) Identification of novel genetic susceptibility loci for Behcet’s disease using a genome-wide association study. Arthritis Res Ther 11:R66

    Article  PubMed  PubMed Central  Google Scholar 

  54. Plenge RM, Cotsapas C, Davies L et al (2007) Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 39:147–148

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the supporting program of the Ministry of Human Resource of China Oversea Returned scholars.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiang Wu.

Additional information

X. He and C. Yu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Yu, C., Zhao, P. et al. The genetics of Henoch–Schönlein purpura: a systematic review and meta-analysis. Rheumatol Int 33, 1387–1395 (2013). https://doi.org/10.1007/s00296-012-2661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-012-2661-4

Keywords

Navigation