Skip to main content

Advertisement

Log in

FK506 inhibition of gliostatin/thymidine phosphorylase production induced by tumor necrosis factor-α in rheumatoid fibroblast-like synoviocytes

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Gliostatin/thymidine phosphorylase (GLS/TP) is known to have angiogenic and arthritogenic activities. The purpose of this study was to determine the inhibitory effects of FK506 (tacrolimus) on GLS production in rheumatoid arthritis (RA). We investigated the modulation of serum GLS by FK506 therapy and the effect of FK506 on the production of GLS in fibroblast-like synoviocytes (FLSs). Serum samples were collected from 11 RA patients with active disease at baseline and after 12 weeks of FK506 treatment. Serum concentrations of GLS and matrix metalloproteinase (MMP)-3 were measured by ELISA and found to be down-regulated in responders evaluated with a disease activity score. Patient FLSs were cultured and stimulated by tumor necrosis factor (TNF)-α with or without FK506. The expression levels of GLS were determined using reverse transcription-polymerase chain reaction (RT-PCR) and enzyme immunoassay and shown to be significantly increased. GLS levels in TNF-α-stimulated FLSs were reduced by FK506 treatment. Our data show a novel mechanism for the action of physiological concentrations of FK506 in RA that regulates the production of GLS in FLSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arend WP, Dayer JM (1990) Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum 33:305–315

    Article  PubMed  CAS  Google Scholar 

  2. Arend WP, Dayer JM (1995) Inhibition of the production and effects of interleukin-1 and tumor necrosis factor α in rheumatoid arthritis. Arthritis Rheum 38:151–160

    Article  PubMed  CAS  Google Scholar 

  3. Choy EHS, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916

    Article  PubMed  CAS  Google Scholar 

  4. Asai K, Nakanishi K, Isobe I, Eksioglu YZ, Hirano A, Hama K, Miyamoto T, Kato T (1992) Neurotrophic action of gliostatin on cortical neurons: identity of gliostatin and platelet-derived endothelial cell growth factor. J Biol Chem 267:20311–20316

    PubMed  CAS  Google Scholar 

  5. Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11

    Article  PubMed  CAS  Google Scholar 

  6. Furukawa T, Yoshimura A, Sumizawa T, Haraguchi M, Akiyama S, Fukui K, Ishizawa M, Yamada Y (1992) Angiogenic factor. Nature 356:668

    Article  PubMed  CAS  Google Scholar 

  7. Moghaddam A, Zhang H-T, Fan T-PF, Hu D-E, Lees VC, Turley H, Fox SB, Gatter KC, Harris AL, Bicknell R (1995) Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci USA 92:998–1002

    Article  PubMed  CAS  Google Scholar 

  8. Miyadera K, Sumizawa T, Haraguchi M, Yoshida H, Konstanty W, Yamada Y, Akiyama S (1995) Role of thymidine phosphorylase activity in the angiogenic effect of platelet-derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res 55:1687–1690

    PubMed  CAS  Google Scholar 

  9. Asai K, Hirano T, Kaneko S, Moriyama A, Nakanishi K, Isobe I, Eksioglu YZ, Kato T (1992) A novel glial growth inhibitory factor, gliostatin, derived from neurofibroma. J Neurochem 59:307–317

    Article  PubMed  CAS  Google Scholar 

  10. Ueki T, Nakanishi K, Asai K, Okouchi Y, Isobe I, Eksioglu YZ, Kato T, Kohno K (1993) Neurotrophic action of gliostatin on cocultured neuron with glial cells. Brain Res 622:299–302

    Article  PubMed  CAS  Google Scholar 

  11. Asai K, Hirano T, Matsukawa K, Kusada J, Takeuchi M, Otsuka T, Matsui N, Kato T (1993) High concentration of immunoreactive gliostatin/platelet-derived endothelial cell growth factor in synovial fluid and serum of rheumatoid arthritis. Clin Chim Acta 218:1–4

    Article  PubMed  CAS  Google Scholar 

  12. Takeuchi M, Otsuka T, Matsui N, Asai K, Hirano T, Moriyama A, Isobe I, Eksioglu YZ, Matsukawa K, Kato T, Tada T (1994) Aberrant production of gliostatin/platelet-derived endothelial cell growth factor in rheumatoid arthritis. Arthritis Rheum 37:662–672

    Article  PubMed  CAS  Google Scholar 

  13. Tanikawa T, Waguri-Nagaya Y, Kusabe T, Aoyama M, Asai K, Otsuka T (2007) Gliostatin/thymidine phosphorylase-regulated vascular endothelial growth-factor production in human fibroblast-like synoviocytes. Rheumatol Int 27:553–559

    Article  PubMed  CAS  Google Scholar 

  14. Waguri Y, Otsuka T, Sugimura I, Matsui N, Asai K, Moriyama A, Kato T (1997) Gliostatin/platelet-derived endothelial cell growth factor as a clinical marker of rheumatoid arthritis and its regulation in fibroblast like synoviocytes. Br J Rheumatol 36:315–321

    Article  PubMed  CAS  Google Scholar 

  15. Muro H, Waguri-Nagaya Y, Mukofujiwara Y, Iwahashi T, Otsuka T, Matsui N, Moriyama A, Asai K, Kato T (1999) Autocrine induction of gliostatin/platelet-derived endothelial cell growth factor (GLS/PD-ECGF) and GLS-induced expression of matrix metalloproteinases in rheumatoid arthritis synoviocytes. Rheumatol 38:1195–1202

    Article  CAS  Google Scholar 

  16. Waguri-Nagaya Y, Otsuka T, Sugimura I, Matsui N, Asai K, Nakajima K, Tada T, Akiyama S, Kato T (2000) Synovial inflammation and hyperplasia induced by gliostatin/platelet-derived endothelial cell growth factor in rabbit knees. Rheumatol Int 20:13–19

    Article  PubMed  CAS  Google Scholar 

  17. Fung JJ (2004) Tacrolimus and transplantation: a decade in review. Transplantation 77:S41–S43

    Article  PubMed  CAS  Google Scholar 

  18. Koo JY, Fleischer AB Jr, Abramovits W, Pariser DM, McCall CO, Horn TD, Gottlieb AB, Jaracz E, Rico MJ (2005) Tacrolimus ointment is safe and effective in the treatment of atopic dermatitis: results in 8000 patients. J Am Acad Dermatol 53:S195–S205

    Article  PubMed  Google Scholar 

  19. Yocum DE, Furst DE, Kaine JL, Baldassare AR, Stevenson JT, Borton MA, Mengle-Gaw LJ, Schwartz BD, Wisemandle W, Mekki QA, Tacrolimus Rheumatoid Arthritis Study Group (2003) Efficacy and safety of tacrolimus in patients with rheumatoid arthritis: a double-blind trial. Arthritis Rheum 48:3328–3337

    Article  PubMed  CAS  Google Scholar 

  20. Kremer JM, Habros JS, Kolba KS, Kaine JL, Borton MA, Mengle-Gaw LJ, Schwartz BD, Wisemandle W, Mekki QA, Tacrolimus-Methotrexate Rheumatoid Arthritis Study Group (2003) Tacrolimus in rheumatoid arthritis patients receiving concomitant methotrexate: a six-month, open-label study. Arthritis Rheum 48:2763–2768

    Article  PubMed  CAS  Google Scholar 

  21. Mattila PS, Ullman KS, Fiering S, Emmel EA, McCutcheon M, Crabtree GR, Herzenberg LA (1990) The action of cyclosporin A and FK506 suggest a novel step in the activation of T lymphocytes. EMBO J 9:4425–4433

    PubMed  CAS  Google Scholar 

  22. Snyder SH, Sabatini DM (1995) Immunophilins and the nervous system. Nat Med 1:32–37

    Article  PubMed  CAS  Google Scholar 

  23. Sugiyama E, Suzuki H, Tunru IS, Yamashita N, Hori T, Kobayashi M (1994) FK506, an immunosuppressant, partially inhibits interleukin 6 production by adherent rheumatoid synovial cells. J Rheumatol 21:1597–1601

    PubMed  CAS  Google Scholar 

  24. Migita K, Tanaka H, Okamoto K, Yoshikawa N, Ichinose Y, Urayama S, Yamasaki S, Ida H, Kawabe Y, Kawakami A, Eguchi K (2000) FK506 augments glucocorticoid-mediated cyclooxygenase-2 down-regulation in human rheumatoid synovial fibroblasts. Lab Invest 80:135–141

    Article  PubMed  CAS  Google Scholar 

  25. Migita K, Miyashita T, Maeda Y, Aoyagi T, Kawabe Y, Nakamura M, Yatsuhashi H, Ishibashi H, Eguchi K (2005) FK506 suppresses the stimulation of matrix metalloproteinase 13 synthesis by interleukin-1beta in rheumatoid synovial fibroblasts. Immunol Lett 98:194–199

    Article  PubMed  CAS  Google Scholar 

  26. Cho ML, Cho CS, Min SY, Kim SH, Lee SS, Kim WU, Min DJ, Min JK, Youn J, Hwang SY, Park SH, Kim HY (2002) Cyclosporine inhibition of vascular endothelial growth factor production in rheumatoid synovial fibroblasts. Arthritis Rheum 46:1202–1209

    Article  PubMed  CAS  Google Scholar 

  27. Arnett FC, Edworthy SM, Bloch DA, Mcshane DJ, Fries JF, Cooper NS et al (1988) The American rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    Article  PubMed  CAS  Google Scholar 

  28. Kusabe T, Waguri-Nagaya Y, Tanikawa T, Aoyama M, Fukuoka M, Kobayashi M, Otsuka T, Asai K (2005) The inhibitory effect of disease-modifying anti-rheumatic drugs and steroids on gliostatin/platelet-derived endothelial cell growth factor production in human fibroblast-like synoviocytes. Rheumatol Int 25:625–630

    Article  PubMed  CAS  Google Scholar 

  29. Prevoo ML, van Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48

    Article  PubMed  CAS  Google Scholar 

  30. van Gestel AM, Prevoo ML, van Hof MA, van Rijswijk MH, van de Putte LB, van Riel PL (1996) Development and validation of the European league against rheumatism response criteria for rheumatoid arthritis. Comparison with the preliminary American college of rheumatology and the world health organization/international league against rheumatism criteria. Arthritis Rheum 39:34–40

    Article  PubMed  Google Scholar 

  31. Hirano T, Asai K, Matsukawa K, Kato T, Takeuchi M, Yonezawa M, Otsuka T, Matsui N (1993) Establishment of enzyme immunoassay system for gliostatin/platelet-derived endothelial cell growth factor (PD-ECGF). Biochim Biophys Acta 1176:299–304

    Article  PubMed  CAS  Google Scholar 

  32. Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, Smolen J, Emery P, Harriman G, Feldmann M, Lipsky P, ATTRACT Study Group (1999) Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. Lancet 354:1932–1939

    Article  PubMed  CAS  Google Scholar 

  33. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleischmann RM, Fox RI, Jackson CG, Lange M, Burge DJ (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 340:253–259

    Article  PubMed  CAS  Google Scholar 

  34. Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK (2003) Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 48:35–45

    Article  PubMed  CAS  Google Scholar 

  35. Rubbert-Roth A, Finckh A (2009) Treatment options in patients with rheumatoid arthritis failing initial TNF-α inhibitor therapy: a critical review. Arthritis Res Ther 11:S1

    Article  PubMed  Google Scholar 

  36. Muro H, Waguri-Nagaya Y, Otsuka T, Matsui N, Asai K, Kato T (2001) Serum gliostatin levels in patients with rheumatoid factor-negative and -positive rheumatoid arthritis and changes of these levels after surgical treatments. Clin Rheum 20:331–336

    Article  CAS  Google Scholar 

  37. Bucala R, Ritchlin C, Winchester R, Cerami A (1991) Constitutive production of inflammatory and mitogenic cytokines by rheumatoid synovial fibroblasts. J Exp Med 173:569–574

    Article  PubMed  CAS  Google Scholar 

  38. Firestein GS (1996) Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum 39:1781–1790

    Article  PubMed  CAS  Google Scholar 

  39. Colville-Nash PR, Scott DL (1992) Angiogenesis and rheumatoid arthritis: pathogenic and therapeutic implications. Ann Rheum Dis 51:919–925

    Article  PubMed  CAS  Google Scholar 

  40. Okada Y, Takeuchi N, Tomita K, Nakanishi I, Nagase H (1989) Immunolocalization of matrix metalloproteinase 3 (stromelysin) in rheumatoid synovioblasts (B cells): correlation with rheumatoid arthritis. Ann Rheum Dis 48:645–653

    Article  PubMed  CAS  Google Scholar 

  41. Firestein GS, Paine MM (1992) Stromelysin and tissue inhibitor of metalloproteinases gene expression in rheumatoid arthritis synovium. Am J Pathol 140:1309–1314

    PubMed  CAS  Google Scholar 

  42. Kobayashi A, Naito S, Enomoto H, Shiomoi T, Kimura T, Obata K, Inoue K, Okada Y (2007) Serum levels of matrix metalloproteinase 3 (stromelysin 1) for monitoring synovitis in rheumatoid arthritis. Arch Pathol Lab Med 131:563–570

    PubMed  CAS  Google Scholar 

  43. Yoshihara Y, Obata K, Fujimoto N, Yamashita K, Hayakawa T, Shimmei M (1995) Increased levels of stromelysin-1 and tissue inhibitor of metalloproteinases-1 in sera from patients with rheumatoid arthritis. Arthritis Rheum 38:969–975

    Article  PubMed  CAS  Google Scholar 

  44. Brennan FM, Browne KA, Green PA, Jaspar JM, Maini RN, Feldmann M (1997) Reduction of serum matrix metalloproteinase 1 and matrix metalloproteinase 3 in rheumatoid arthritis patients following anti-tumour necrosis factor-alpha (cA2) therapy. Br J Rheumatol 36:643–650

    Article  PubMed  CAS  Google Scholar 

  45. Venkataramanan R, Jain A, Warty VS, Abu-Elmagd K, Alessiani M, Lever J, Krajak A, Flowers J, Mehta S, Zuckerman S, Fung J, Todo S, Starzl TE (1991) Pharmacokinetics of FK 506 in transplant patients. Transplant Proc 23:2736–2740

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Science, Sports and Culture of Japan.

Conflict of interest statement

No conflict of interest has been declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Waguri-Nagaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamagami, T., Waguri-Nagaya, Y., Ikuta, K. et al. FK506 inhibition of gliostatin/thymidine phosphorylase production induced by tumor necrosis factor-α in rheumatoid fibroblast-like synoviocytes. Rheumatol Int 31, 903–909 (2011). https://doi.org/10.1007/s00296-010-1411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-010-1411-8

Keywords

Navigation