Skip to main content
Log in

Effects of pulsed and sinusoid electromagnetic fields on human chondrocytes cultivated in a collagen matrix

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Although several effects of electromagnetic fields (EMFs) on articular cartilage have been reported in recent studies, the use of EMFs to treat osteoarthritis remains a matter of debate. In an in vitro study, human chondrocytes harvested from osteoarthritic knee joints were released from their surrounding matrix and transferred in defined concentration into a 3D matrix (type-I collagen gel). The cultivation, performed under standard conditions, lasted up to 14 days. During this time, treatment groups were continuously exposed to either sinusoid or pulsed electromagnetic fields (PEMFs). The PEMFs revealed the following characteristics: maximum magnetic flux density of 2 mT, frequency of the bursts of 16.7 Hz with each burst consisting of 20 pulses. Similarly, the sinusoid EMFs also induced a maximum flux density of 2 mT with a frequency of 50 Hz. Control groups consisting of equal number of samples were not exposed to EMF. Immunohistological examinations of formalin-fixed, paraffin-embedded samples revealed positive staining for type-II collagen and proteoglycans in the immediate pericellular region with no differences between the two different treatment groups and the control groups. With increasing cultivation time, both type-II collagen and aggrecan gene expression declined, but no significant differences in gene expression were found between the treatment and control groups. In conclusion, using our in vitro setting, we were unable to detect any effects of pulsed and sinusoidal magnetic fields on human adult osteoarthritic chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bassett CA (1984) The development and application of pulsed electromagnetic fields (PEMFs) for ununited fractures and arthrodeses. Orthop Clin North Am 15:61–87

    PubMed  CAS  Google Scholar 

  2. Albertini A, Zucchini P, Noera G, Cadossi R, Napoleone CP, Pierangeli A (1999) Protective effect of low energy pulsing electromagnetic fields on acute experimental myocardial infarcts in rats. Bioelectromagnetics 20:372–377

    Article  PubMed  CAS  Google Scholar 

  3. Aaron RK, Ciombor DM, Jolly G (1989) Stimulation of experimental endochondral ossification by low-energy pulsing electromagnetic fields. J Bone Miner Res 4:227–233

    Article  PubMed  CAS  Google Scholar 

  4. Aaron RK, Ciombor DM (1996) Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. J Orthop Res 14:582–589

    Article  PubMed  CAS  Google Scholar 

  5. Chang K, Chang WH, Tsai MT, Shih C (2006) Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts. Connect Tissue Res 47:222–228

    Article  PubMed  Google Scholar 

  6. Aaron RK, Ciombor DM (1993) Therapeutic effects of electromagnetic fields in the stimulation of connective tissue repair. J Cell Biochem 52:42–46

    Article  PubMed  CAS  Google Scholar 

  7. Ciombor DM, Lester G, Aaron RK, Neame P, Caterson B (2002) Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res 20:40–50

    Article  PubMed  CAS  Google Scholar 

  8. De Mattei M, Caruso A, Pezzetti F, Pellati A, Stabellini G, Sollazzo V, Traina GC (2001) Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. Connect Tissue Res 42:1–11

    Article  Google Scholar 

  9. De Mattei M, Pasello M, Pellati A, Stabellini G, Massari L, Gemmati D, Caruso A (2003) Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res 44:54–59

    Article  Google Scholar 

  10. De Mattei M, Fini M, Setti S, Ongaro A, Gemmati D, Stabellini G et al (2007) Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthritis Cartilage 15:163–168

    Article  PubMed  Google Scholar 

  11. Mow VC, Wang CC, Hung CT (1999) The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthritis Cartilage 7:41–58

    Article  PubMed  CAS  Google Scholar 

  12. Garon M, Legare A, Guardo R, Savard P, Buschmann MD (2002) Streaming potentials map are spatially resolved indicators of amplitude, frequency and ionic strength dependant responses of articular cartilage to load. J Biomech 35:207–216

    Article  PubMed  CAS  Google Scholar 

  13. Grodzinsky AJ, Lipshitz H, Glimcher MJ (1978) Electromechanical properties of articular cartilage during compression and stress relaxation. Nature 275:448–450

    Article  PubMed  CAS  Google Scholar 

  14. Lai WM, Sun DD, Athesian GA, Guo XE, Mow VC (2002) Electrical signals for chondrocytes in cartilage. Biorheology 39:39–45

    PubMed  CAS  Google Scholar 

  15. Lotke PA, Black J, Richardson S (1974) Electromechanical properties in human articular cartilage. J Bone Joint Surg 56-A:1040–1046

    Google Scholar 

  16. Schmidt-Rohlfing B, Schneider U, Goost H, Silny J (2002) Mechanically induced electrical potentials of articular cartilage. J Biomech 35:475–482

    Article  PubMed  Google Scholar 

  17. Frank EH, Grodzinsky AJ (1987) Cartilage electromechanics—I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength. J Biomech 20:615–627

    Article  PubMed  CAS  Google Scholar 

  18. Sugimoto T, Yoshino M, Nagao M, Ishii S, Yabu H (1996) Voltage-gated ionic channels in cultured rabbit articular chondrocytes. Comp Biochem Physiol 115C:223–232

    CAS  Google Scholar 

  19. Mobasheri A, Mobasheri R, Francis MJO, Trujillio E, Alvarez de la Rosa D, Martin-Vasallo P (1998) Ion transport in chondrocytes: membrane transporters involved in intracellular ion hemostasis and the regulation of cell volume, free Ca2+ and pH. Histol Histopathol 13:893–910

    PubMed  CAS  Google Scholar 

  20. Fitzsimmons RJ, Ryaby JT, Magee FP, Baylink DJ (1994) Combined magnetic fields increased net calcium flux in bone cells. Calcif Tissue 55:376–380

    Article  CAS  Google Scholar 

  21. Aaron RK, Wang S, Ciombor DM (2002) Upregulation of basal TGFß1 levels by EMF coincident with chondrogenesis—implications for skeletal repair and tissue engineering. J Orthop Res 20:233–240

    Article  PubMed  CAS  Google Scholar 

  22. Trock DH, Bollet AJ, Dyer RH, Fielding LP, Miner WK, Markoll R (1993) A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis. J Rheumatol 20:456–460

    PubMed  CAS  Google Scholar 

  23. Trock DH, Bollet AJ, Markoll R (1994) The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and ervical spine. Report of randomized, double blind, placebo controlled trials. J Rheumatol 21:1903–1911

    PubMed  CAS  Google Scholar 

  24. Pipitone N, Scott DL (2001) Magnetic pulse treatment for knee osteoarthritis: a randomised, double-blind, placebo-controlled study. Curr Med Res Opin 17:190–196

    Article  PubMed  CAS  Google Scholar 

  25. Liu H, Abbott J, Bee JA (1996) Pulsed electromagnetic fields influence hyaline cartilage extracellular natrix composition without affecting molecular structure. Osteoarthritis Cartilage 4:63–76

    Article  PubMed  CAS  Google Scholar 

  26. Pezzetti F, DeMattei M, Caruso A, Cadossi R, Zucchini P, Carinci F, Traina GC, Sollazzo V (1999) Effects of pulsed electromagnetic fields on human chondrocytes: an in vitro study. Calcif Tissue Int 65:396–401

    Article  PubMed  CAS  Google Scholar 

  27. Sakai A, Suzuki K, Nakamura T, Norimura T, Tsuchiya T (1991) Effects of pulsing electromagnetic fields on cultured cartilage cells. Int Orthop 15:341–346

    Article  PubMed  CAS  Google Scholar 

  28. De Mattei M, Pellati A, Pasello M, Ongaro A, Setti S, Massari L, Gemmati D, Caruso A (2004) Effects of physical stimulation with electromagnetic field and insulin growth factor-I treatment on proteoglycan synthesis of bovine articular cartilage. Osteoarthritis Cartilage 12:793–800

    Article  PubMed  Google Scholar 

  29. Ciombor DM, Aaron RK, Wang S, Simon B (2003) Modification of osteoarthritis by pulsed electromagnetic field—a morphological study. Osteoarthritis Cartilage 11:455–462

    Article  PubMed  Google Scholar 

  30. Bobacz K, Graninger WB, Amoyo L, Smolen JS (2006) Effect of pulsed electromagnetic fields on proteoglycan biosynthesis of articular cartilage is age dependent. Ann Rheum Dis 65:949–951

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schmidt-Rohlfing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt-Rohlfing, B., Silny, J., Woodruff, S. et al. Effects of pulsed and sinusoid electromagnetic fields on human chondrocytes cultivated in a collagen matrix. Rheumatol Int 28, 971–977 (2008). https://doi.org/10.1007/s00296-008-0565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-008-0565-0

Keywords

Navigation