Skip to main content

Advertisement

Log in

Inhibitory effect of bone resorption and inflammation with etidronate therapy in patients with rheumatoid arthritis for 3 years and in vitro assay in arthritis models

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

This study was conducted to identify bone resorption and anti-inflammatory effects with intermittent cyclical etidronate therapy (ICET) in patients with rheumatoid arthritis, and anti-inflammatory effect of etidronate in vitro. We compared bone mineral density (BMD), urinary deoxypyridinoline (DPD) level, bone alkaline phosphatase (BAP) level and Larsen damage scores between the ICET and the non-ICET groups for 3 years. The levels of interleukin-6 (IL-6), prostaglandin E2 (PGE2), substance P and vascular endothelial growth factor (VEGF) in synovial cells from arthritis models were measured following the addition of etidronate. In the ICET group, BMD and BAP levels increased. Urinary DPD level and the Larsen damage score were significantly lower than that in the non-ICET group. In the in vitro study, the production of IL-6, PGE2, substance P and VEGF were inhibited in a dose-dependent manner. Bone resorption and destruction inhibition effect of etidronate remained for 3 years. In vitro study showed that the production of inflammatory cytokines and an angiogenesis factor were inhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bromley M, Wooley DE (1984) Chondroclasts and osteoclasts at subchondral sites of erosion in rheumatoid joint. Arthritis Rheum 27:968–975

    Article  PubMed  CAS  Google Scholar 

  2. Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR (1998) Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 152:943–951

    PubMed  CAS  Google Scholar 

  3. Pearson CM (1956) Development of arthritis, periarthritis and periostitis in rats given adjuvants. Proc Soc Exp Biol Med 91:95–101

    PubMed  CAS  Google Scholar 

  4. Pearson CM, Wood FD (1963) Studies of arthritis and other lesions induced in rats by the injection of mycobacterial adjuvant. VII. Pathologic details of the arthritis and spondylitis. Am J Pathol 42:73–95

    PubMed  CAS  Google Scholar 

  5. Inoue T, Kusida K, Miyamoto S, Sumi Y, Orimo H, Yamashita G (1983) Quantitative assessment of bone density on X-ray picture. J Jpn Orthop 57:1923–1936

    CAS  Google Scholar 

  6. Larsen A, Dale K, Eek M (1977) Radiographic evaluation of rheumatoid arthritis and released conditions by standard reference films. Acta Radiol Diagn 18:481–491

    CAS  Google Scholar 

  7. Hasegawa J, Nagashima M, Yamamoto M, Nishijima T, Katsumata S, Yoshino S (2003) Bone resorption and inflammatory inhibition efficacy of intermittent cyclical etidronate therapy in rheumatoid arthritis. J Rheumatol 30:474–479

    PubMed  CAS  Google Scholar 

  8. Shimizu S, Shiozawa S, Shiozawa K, Imura S, Fujita T (1985) Quantitative histologic studies on the pathogenesis of periarticular osteoporosis in rheumatoid arthritis. Arthritis Rheum 28:25–31

    Article  PubMed  CAS  Google Scholar 

  9. Gough AKS, Peel NFA, Eastell R, Holder RL, Lilley J, Emery P (1994) Excretion of pyridinium crosslinks correlates with disease activity and appendicular bone loss in early rheumatoid arthritis. Ann Rheum Dis 53:14–17

    PubMed  CAS  Google Scholar 

  10. Haugeberg G, Uhlig T, Falch J, Halse JI, Kvien TK (2004) Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis. Results from 394 patients in the Oslo County Rheumatoid Arthritis Register. Arthritis Rheum 3:522–530

    Google Scholar 

  11. Suzuki Y, Tanihara M, Ichikawa Y, Osanai A, Nakagawa M, Ide M, Mizushima Y (1994) Periarticular osteopenia in adjuvant-induced arthritis: role of interleukin-1 in decreased osteogenic and increased resorptive potential of bone marrow cells. Ann Rheum Dis 54:484–490

    Google Scholar 

  12. Matsuno H, Sawai T, Nezuka T, Uzuki M, Tsuji H, Nishimoto N, Yoshizaki K (1998) Treatment of rheumatoid synovitis with anti-reshaping human interleukin-6 receptor monoclonal antibody; use of rheumatoid arthritis tissue implants in SCID mouse model. Arthritis Rheum 41:2014–2021

    Article  PubMed  CAS  Google Scholar 

  13. Suda T, Nakamura I, Jimi E, Takahashi N (1997) Regulation of osteoclast function. J Bone Miner Res 12:869–879

    Article  PubMed  CAS  Google Scholar 

  14. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclast genesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  15. Peel NF, Moore DJ, Barrington NA, Bax DE, Eastell R (1995) Risk of vertebral fracture and relationship to bone mineral density in steroid treated rheumatoid arthritis. Ann Rheum Dis 54:801–816

    PubMed  CAS  Google Scholar 

  16. Verstraeten A, Dequeker J (1986) Vertebral and peripheral bone mineral content and fracture incidence in post-menopausal patients with rheumatoid arthritis: effct of low dose corticosteroids. Ann Rheum Dis 45:852–857

    PubMed  CAS  Google Scholar 

  17. Laan RF, van Riel PL, van Erning LJ, Lemmens JA, Ruijs SH, van de Putte LB (1992) Vertebral osteoporosis in rheumatoid arthritis patients: effect of low dose prednisone therapy. Br J Rheumatol 31:91–96

    Article  PubMed  CAS  Google Scholar 

  18. Piet G, Jan D, Johan V, Rita S, Steven B, Jo J, Jo N, Jef R (1998) Cyclical etidronate increases bone density in the spine and hip of postmenopausal women receiving long term corticosteroid treatment. A double blind, randomized placebo controlled study. Ann Rheum Dis 57:724–727

    Article  PubMed  Google Scholar 

  19. Ralston SH, Hacking L, Willocks L, Bruce F, Pitkeathly DA (1989) Clinical, biochemical, and radiographic effects of aminohydroxypropylidine bisphosphonate treatment in rheumatoid arthritis. Ann Rheum Dis 48:396–399

    PubMed  CAS  Google Scholar 

  20. Eggelmeijer F, Papapoulos SE, van Paassen HC, Dijkmans BA, Valkema R, Westedt ML, Landman JO, Pauwels EK, Breedveld FC (1996) Increased bone mass with pamidronate treatment in rheumatoid arthritis. Results of a three-year randomized, double blind trial. Arthritis Rheum 39:396–402

    Article  PubMed  CAS  Google Scholar 

  21. Heikki V, Leena L, Marja-Kaisa K, Jami M, Claes F, Juha R, Yrjo TK (2003) Two year randomized controlled trial of etidronate in rheumatoid arthritis: changes in serum aminoterminal telopeptides correlate with radiographic progression of disease. J Rheumatol 30:468–473

    PubMed  Google Scholar 

  22. Hirano K (2003) Effects of bisphosphonate on the inflammation. Clin Calcium 2:128–133

    Google Scholar 

  23. Osterman T, Kippo K, Lauren L, Hannuniemi R, Sellman R (1995) Effect of clodronate on established collagen-induced arthritis in rats. Inflamm Res 44:258–263

    Article  PubMed  CAS  Google Scholar 

  24. Tanaka T, Nakayama T, Katsumata T (2001) Therapeutic agent for osteoporosis possessing analgesic effect. Bio Clinica 16:237–241

    Article  CAS  Google Scholar 

  25. Serre CM, Farlay D, Delmas PD, Chenu C (1999) Evidence for a dense and intimate innervation of bone tissue, including glutamate-containing fibers. Bone 25:623–629

    Article  PubMed  CAS  Google Scholar 

  26. Stein C, Millan MJ, Yassouridis A, Herz A (1988) Antinocicetive effects of μ-κ-agonists in inflammation are enhanced by a peripheral opioid receptor-specific mechanism. Eur J Pharmacol 155:255–264

    Article  PubMed  CAS  Google Scholar 

  27. Levine JD, Clark R, Devor M, Helms C, Moskowitz MA, Basbaum AI (1984) Intraneuronal substance P contributes to the severity of experimental arthritis. Science 226:547–549

    Article  PubMed  CAS  Google Scholar 

  28. Nagashima M, Tanaka H, Takahashi H, Tachihara A, Tanaka K, Ishiwata T, Asano G, Yoshino S (2002) Study of the mechanism involved angiogenesis and synovical cell proliferation in human synovial tissues of patients with rheumatoid arthritis using SCID mice. Lab Invest 82:981–988

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Fumio Nishikaku for technological guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Nagashima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, K., Yoshino, S., Shue, G. et al. Inhibitory effect of bone resorption and inflammation with etidronate therapy in patients with rheumatoid arthritis for 3 years and in vitro assay in arthritis models. Rheumatol Int 26, 627–632 (2006). https://doi.org/10.1007/s00296-005-0042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-005-0042-y

Keywords

Navigation