Skip to main content
Log in

Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Autophagy serves as a survival mechanism against starvation and has been reported to be important for cell growth and differentiation in eukaryotes. Here, we investigated the function of a cysteine protease BcAtg4 in the gray mold fungus Botrytis cinerea. Yeast complementation experiments revealed that Bcatg4 can functionally replace the counterpart of yeast. Subcellular localization exhibited that BcAtg4 diffused in cytoplasm at different developmental stages. Targeted gene deletion of Bcatg4Bcatg4) led to autophagy blocking and a significant retardation in growth and conidiation. In addition, ΔBcatg4 failed to form sclerotia. Infection tests demonstrated that ΔBcatg4 was severely attenuated in virulence on different host plant tissues. All of the phenotypic defects were restored by reintroducing an intact copy of Bcatg4 into ΔBcatg4. These results indicate that Bcatg4 plays multiple roles in the developmental processes and pathogenesis of B. cinerea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bartoszewska M, Kiel JA (2010) The Role of macroautophagy in development of filamentous fungi. Antioxid Redox Sign 14:2271–2287

    Article  CAS  Google Scholar 

  • Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandhoff B, Simon A, Dornieden A, Schumacher J (2017) Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet 5:931–949

    Article  CAS  Google Scholar 

  • Büttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, Brückner B, Tudzynski P (1994) Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Curr Genet 5:445–450

    Article  Google Scholar 

  • Dean R, Van Kan JAL, Pretorius A, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Ramos-Pamplona M, Naqvi NI (2009) Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae. Autophagy 5:33–43

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Qu Z, Naqvi NI (2012) Role of macroautophagy in nutrient homeostasis during fungal development and pathogenesis. Cells 1:449–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2005) Different signalling pathways involving a Gα protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59:821–835

    Article  CAS  Google Scholar 

  • Feng H, Li G, Du S, Yang S, Li X, Figueiredo P, Qin Q (2016) The septin protein Sep4 facilitates host infection by plant fungal pathogens via mediating initiation of infection structure formation. Environ Microbiol 19:1730–1749

    Article  CAS  Google Scholar 

  • Fillinger S, Elad Y (2016) Botrytis—the fungus, the pathogen and its management in agricultural systems. Springer, Switzerland

    Book  Google Scholar 

  • Geng J, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. EMBO Rep 9:859–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan IA, Lu J, Liu X, Rehman A, Lin F (2012) Multifunction of autophagy-related genes in filamentous fungi. Microbiol Res 167:339–345

    Article  CAS  PubMed  Google Scholar 

  • Kikuma T, Kitamoto K (2011) Analysis of autophagy in Aspergillus oryzae by disruption of Aoatg13, Aoatg4, and Aoatg15 genes. FEMS Microbiol Lett 316:61–69

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Huang W, Klionsky DJ (2001) Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 152:51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J cell Sci 118:7–18

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Wang F, Zheng Z, Fan B, Chen Z (2011) A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J 66:953–968

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Lu J, Zhang L, Dong B, Min H, Lin F (2007) Involvement of a Magnaporthe grisea Serine/Threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell 6:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Liu X, Lu J, Zhang L, Min H, Lin F (2010) The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae. Autophagy 6:74–85

    Article  CAS  PubMed  Google Scholar 

  • Lv W, Wang C, Yang N, Que Y, Talbot NJ, Wang Z (2017) Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Sci Rep 7:11062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell B 36:2491–2502

    Article  CAS  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Bi 27:107–132

    Article  CAS  Google Scholar 

  • Nair U, Yen W, Mari M, Cao Y, Xie Z, Baba M, Reggiori F, Klionsky DJ (2012) A role for Atg8–PE deconjugation in autophagosome biogenesis. Autophagy 8:780–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Bio 2:211–216

    Article  CAS  Google Scholar 

  • Pollack JK, Harris SD, Marten MR (2009) Autophagy in filamentous fungi. Fungal Genet Biol 46:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Zhang Z, Shao W, Yang Y, Zhou M, Chen C (2017) The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea. Mol Plant Pathol 18:238–248

    Article  CAS  PubMed  Google Scholar 

  • Ren W, Liu N, Sang C, Shi D, Zhou M, Chen C, Qin Q, Chen W (2018a) The autophagy gene BcATG8 regulates the vegetative differentiation and pathogenicity of Botrytis cinerea. Appl Environ Microb 84:e02455–e02417

    Article  CAS  Google Scholar 

  • Ren W, Sang C, Shi D, Song X, Zhou M, Chen C (2018b) Ubiquitin-like activating enzymes BcAtg3 and BcAtg7 participate in development and pathogenesis of Botrytis cinerea. Curr Genet. https://doi.org/10.1007/s00294-018-0810-3

    Article  PubMed  Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J (2012) Tools for Botrytis cinerea: new expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol 49:483–497

    Article  CAS  PubMed  Google Scholar 

  • Shoji J, Arioka M, Kitamoto K (2006) Possible involvement of pleiomorphic vacuolar networks in nutrient recycling in filamentous fungi. Autophagy 2:226–227

    Article  CAS  PubMed  Google Scholar 

  • Van Kan JAL, Stassen JHM, Mosbach A, Van Der Lee TAJ, Faino L, Farmer AD, Papasotiriou DG, Zhou S, Seidl MF, Cottam E, Edel D, Hahn M, Schwartz DC, Dietrich RA, Widdison S, Scalliet G (2016) A gapless genome sequence of the fungus Botrytis cinerea. Mol Plant Pathol 1:75–89

    Google Scholar 

  • Voigt O, Pöggeler S (2013) Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora. Autophagy 9:33–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9:65–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen X, Klionsky DJ (2016) An overview of macroautophagy in yeast. J Mol Biol 428:1681–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death differ 2:1542–1552

    Article  CAS  Google Scholar 

  • Yu F, Gu Q, Yun Y, Yin Y, Xu J, Shim WB, Ma Z (2014) The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. New Phytol 203:219–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (31672065 and 31801778), China Agriculture Research System (CARS-24-C-01) and Jiangsu Provincial Agricultural Plans [PZCZ201715 and  CX(18)2005].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjun Chen or Zhonghua Ma.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Generation and identification of Bcatg4 deletion mutant. a Gene replacement strategy of Bcatg4. b Southern blot analysis of Bcatg4 deletion mutant (TIF 1063 KB)

Supplementary material 2 (DOC 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Ren, W., Li, F. et al. Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea. Curr Genet 65, 293–300 (2019). https://doi.org/10.1007/s00294-018-0882-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-018-0882-0

Keywords

Navigation