Skip to main content
Log in

Chloroplast genome structures in Gentiana (Gentianaceae), based on three medicinal alpine plants used in Tibetan herbal medicine

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The genus Gentiana is the largest in the Gentianaceae family with ca. 400 species. However, with most species growing on the Qinghai–Tibet plateau, the processes of adaptive evolution and speciation within the genus is not clear. Also, the genomic analyses could provide important information. So far, the complete chloroplast (cp) genome data of the genus are still deficient. As the second and third sequenced members within Gentianaceae, we report the construction of complete cp sequences of Gentiana robusta King ex Hook. f. and Gentiana crassicaulis Duthie ex Burk., and describe a comparative study of three Gentiana cp genomes, including the cp genome of Gentiana straminea Maxim. published previously. These cp genomes are highly conserved in gene size, gene content, and gene order and the rps16 pseudogene with exon2 missing was found common. Three repeat types and five SSR types were investigated, and the number and distribution are similar among the three genomes. Sixteen genome divergent hotspot regions were identified across these cp genomes that could provide potential molecular markers for further phylogenetic studies in Gentiana. The IR/SC boundary organizations in Gentianales cp genomes were compared and three different types of boundaries were observed. Six data partitions of cp genomes in Gentianales were used for phylogenetic analyses and different data partitions were largely congruent with each other. The ML phylogenetic tree was constructed based on the fragments in cp genomes commonly available in 33 species from Lamiids, including 12 species in Gentianales, 1 in Boraginaceae, 10 in Solanales, and 10 in Lamiales. The result strongly supports the position of Boraginaceae (Ehretia acuminata) as the sister of Solanales, with the bootstrap values of 97 %. This study provides a platform for further research into the molecular phylogenetics of species in the order Gentianales (family Gentianaceae) notably in respect of speciation and species identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen CH, Wang JC (1999) Revision of the genus Gentiana L. (Gentianaceae) in Taiwan. Bot Bull Acad Sin 40(1):9–38

    Google Scholar 

  • Civaň P, Foster PG, Embley MT, Séneca A, Cox CJ (2014) Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biol Evol 6(4):897–911

    Article  PubMed  PubMed Central  Google Scholar 

  • Conant GC, Wolfe KH (2008) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24(6):861–862

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32(suppl 2):W273–W279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George B, Bhatt BS, Awasthi M, George B, Singh Achuit K (2015) Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr Genet 61(4):665–677

    Article  CAS  PubMed  Google Scholar 

  • Gielly L, Yuan YM, Kupfer P, Taberlet P (1996) Phylogenetic use of noncoding regions in the genus Gentiana L.: chloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. Mol Phylogenet Evol 5(3):460–466

    Article  CAS  PubMed  Google Scholar 

  • Gogniashvili M, Naskidashvili P, Bedoshvili D, Kotorashvili A, Kotaria N, Beridze T (2015) Complete chloroplast DNA sequences of Zanduri wheat (Triticum spp.). Genet Resour Crop Evol 62:1269–1277

    Article  CAS  Google Scholar 

  • Guo W, Grewe F, Cobo-Clark A, Fan W, Duan Z, Adams RP, Schwarzbach AE, Mower JP (2014) Predominant and substoichiometric isomers of the plastid genome coexist within Juniperus plants and have shifted multiple times during cupressophyte evolution. Genome Biol Evol 6(3):580–590

    Article  PubMed  PubMed Central  Google Scholar 

  • He TN (1988) Genus Gentiana. In: He TN (ed) Flora reipublicae Popularis Sinicae, vol 62., GentianaceaeScience Press, Beijing, pp 14–257

    Google Scholar 

  • Ho TN, Liu SW (1990) The infrageneric classification of Gentiana (Gentianaceae). Bull Br Mus Nat Hist Bot Ser 20:169–192

    Google Scholar 

  • Ho TN, Liu SW (2002) A worldwide monograph of Gentiana. Science press, Beijing, p i

    Google Scholar 

  • Huang H, Shi C, Liu Y, Mao SY, Gao LZ (2014) Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol 14(26):4302–4315

    Google Scholar 

  • Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L (2011) Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome 54(8):663–673

    Article  PubMed  Google Scholar 

  • Kurtz S, Schleiermacher C (1999) REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics 15(5):426–427

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Wang LY, Yang HL, Liu JQ (2007) Confirmation of natural hybrids between Gentiana straminea and G. siphonantha (Gentianaceae) based on molecular evidence. Acta Bot Yunnanica 29(1):91–97

    Google Scholar 

  • Li XW, Hu ZG, Lin XH, Li Q, Gao HH, Luo GA, Chen SL (2012) High-throughput pyrosequencing of the complete chloroplast genome of Magnolia officinalis and its application in species identification. Acta Pharm Sin 47(1):124–130

    CAS  Google Scholar 

  • Ma J, Li XQ (2015) Organellar genome copy number variation and integrity during moderate maturation of roots and leaves of maize seedlings. Curr Genet 61(4):591–600

    Article  CAS  PubMed  Google Scholar 

  • Ma YC, Hsia KC, Hsiao PK (1964) Study on the genus Gentiana L. section Aptera Kusnez. in China. Acta Sci Nat Univ Neimongol 6(1):33–51

    Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104(49):19363–19368

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni LH, Zhao ZL, Xu HX, Chen SL, Gaawe D (2016) The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion. Gene 577(2):281–288

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2015) The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet. doi:10.1007/s00294-015-0548-0

    PubMed  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Vasil IK, Bogorad L (eds) Cell culture and somatic cell genetics in plants, the molecular biology of plastids, vol 7A. Academic Press, San Diego, pp 5–53

    Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry R (ed) Diversity and evolution of plants-genotypic variation in higher plants. CABI Publishing, Oxfordshire, pp 45–68

    Chapter  Google Scholar 

  • Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014) From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14(1):385–399

    Article  Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33(suppl 2):W686–W689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Angiosperm phylogeny group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161(2):105–121

    Article  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106(3):411–422

    Article  CAS  PubMed  Google Scholar 

  • Vieira LD, Dos Anjos KG, Faoro H, Fraga HP, Greco TM, Pedrosa FO, de Souza EM, Rogalski M, de Souza RF, Guerra MP (2015) Phylogenetic inference and SSR characterization of tropical woody bamboos tribe Bambuseae (Poaceae: Bambusoideae) based on complete plastid genome sequences. Curr Genet. doi:10.1007/s00294-015-0549-z

    Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20(17):3252–3255

    Article  CAS  PubMed  Google Scholar 

  • Yang JB, Yang SX, Li HT, Yang J, Li DZ (2013) Comparative chloroplast genomes of Camellia species. PLoS One 8(8):e73053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap JY, Rohner T, Greenfield A, Van Der Merwe M, McPherson H, Glenn W, Kornfeld G, Marendy E, Pan AY, Wilton A, Wilkins MR, Rossetto M, Delaney SK (2015) Complete chloroplast genome of the Wollemi pine (Wollemia nobilis): structure and evolution. PLoS ONE 10(6):e0128126

    Article  PubMed  PubMed Central  Google Scholar 

  • Young HA, Lanzatella CL, Sarath G, Tobias CM (2011) Chloroplast genome variation in upland and lowland switchgrass. PLoS One 6(8):e23980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan YM, Küpfer P (1997) The monophyly and rapid evolution of Gentiana sect. Chondrophyllae Bunge s.l. (Gentianaceae): evidence from the nucleotide sequences of the internal transcribed spacers of nuclear ribosomal DNA. Bot J Linn Soc 123(1):25–43

    Google Scholar 

  • Yuan YM, Küpfer P, Doyle JJ (1996) Infrageneric phylogeny of the genus Gentiana (Gentianaceae) inferred from nucleotide sequences of the internal transcribed spaces (ITS) of nuclear ribosomal DNA. Am J Bot 83(5):641–652

    Article  CAS  Google Scholar 

  • Zhang XL, Ge XJ, Liu JQ, Yuan YM (2006) Morphological, karyological and molecular delimitation of two gentians: Gentiana crassicaulis versus G. tibetica (Gentianaceae). Acta Phytotaxon Sin 44(6):627–640

    Article  Google Scholar 

  • Zhang XL, Yuan YM, Ge XJ (2007) Genetic structure and differentiation of Gentiana atuntsiensis W. W. Smith and G. striolata T. N. Ho (Gentianaceae) as revealed by ISSR markers. Bot J Linn Soc 154(2):225–232

    Article  Google Scholar 

  • Zhang XL, Wang YJ, Ge XJ, Yuan YM, Yang HL, Liu JQ (2009) Molecular phylogeny and biogeography of Gentiana sect. Cruciata (Gentianaceae) based on four chloroplast DNA datasets. Taxon 58(3):862–870

    Google Scholar 

  • Zhang Y, Li L, Yan TL, Liu Q (2014) Complete chloroplast genome sequences of Praxelis (Eupatorium catarium Veldkamp), an important invasive species. Gene 549(1):58–69

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZL, Dorje G, Wang ZT (2010) Identification of medicinal plants used as Tibetan traditional medicine Jie-Ji. J Ethnopharmacol 132(1):122–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank MSc Christine Leon from Royal Botanic Gardens, Kew for assistance in English revision. Also, this work was supported by grants from the National Natural Science Foundation of China (No. 81173654).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhili Zhao.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, L., Zhao, Z., Xu, H. et al. Chloroplast genome structures in Gentiana (Gentianaceae), based on three medicinal alpine plants used in Tibetan herbal medicine. Curr Genet 63, 241–252 (2017). https://doi.org/10.1007/s00294-016-0631-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0631-1

Keywords

Navigation