Skip to main content
Log in

Fimbrial phase variation: stochastic or cooperative?

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Surface fimbriae of pathogenic Escherichia coli facilitate sensing, adhesion and even invasion of host epithelial cells. While it is known that the pathogen has the potential to express a plethora of fimbrial variants susceptible to rapid phase ON/OFF variation, it is an open question if the fimbrial diversity seen at the population level is the product of random stochasticity or a concerted effort based on active communication. Here we discuss the possibility of a mechanism alternative to a stochastic fimbrial phase variation model affecting the dynamics of a heterogeneous population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen SB et al (2015) Long-term social dynamics drive loss of function in pathogenic bacteria. Proc Natl Acad Sci USA 112(34):10756–10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson GG et al (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301(5629):105–107

    Article  CAS  PubMed  Google Scholar 

  • Aoki SK et al (2009) Contact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli. J Bacteriol 191(6):1777–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayliss CD (2009) Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol Rev 33(3):504–520

    Article  CAS  PubMed  Google Scholar 

  • Blango MG, Mulvey MA (2009) Bacterial landlines: contact-dependent signaling in bacterial populations. Curr Opin Microbiol 12(2):177–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckles EL et al. (2015) Signature-tagged mutagenesis and co-infection studies demonstrate the importance of P fimbriae in a murine model of urinary tract infection. Pathog Dis 73(4)

  • Connell I et al (1996) Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93(18):9827–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czechowska K et al (2014) Cheating by type 3 secretion system-negative Pseudomonas aeruginosa during pulmonary infection. Proc Natl Acad Sci U S A 111(21):7801–7806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floyd KA et al (2015) Adhesive fiber stratification in uropathogenic Escherichia coli biofilms unveils oxygen-mediated control of type 1 pili. PLoS Pathog 11(3):e1004697

    Article  PubMed  PubMed Central  Google Scholar 

  • Graveline R et al (2015) Monitoring F1651 P-like fimbria expression at the single-cell level reveals a highly heterogeneous phenotype. Infect Immun 83(5):1929–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene SE et al (2015) Human urine decreases function and expression of Type 1 Pili in uropathogenic Escherichia coli. MBio 6(4):e00820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunther NWT et al (2002) Assessment of virulence of uropathogenic Escherichia coli type 1 fimbrial mutants in which the invertible element is phase-locked on or off. Infect Immun 70(7):3344–3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson JP et al (2009) Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog 5(2):e1000305

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernday A et al (2002) Self-perpetuating epigenetic pili switches in bacteria. Proc Natl Acad Sci U S A 99(Suppl 4):16470–16476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden NJ, Gally DL (2004) Switches, cross-talk and memory in Escherichia coli adherence. J Med Microbiol 53(Pt 7):585–593

    Article  CAS  PubMed  Google Scholar 

  • Humphries AD et al (2003) The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol 48(5):1357–1376

    Article  CAS  PubMed  Google Scholar 

  • Hung C et al (2013) Escherichia coli biofilms have an organized and complex extracellular matrix structure. MBio 4(5):e00645

    Article  PubMed  PubMed Central  Google Scholar 

  • Khandige S et al (2015) sRNA-mediated regulation of P-fimbriae phase variation in uropathogenic Escherichia coli. PLoS Pathog 11(8):e1005109

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch G et al (2014) Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 158(5):1060–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez JJ et al (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19(12):2803–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melican K et al (2011) Uropathogenic Escherichia coli P and Type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog 7(2):e1001298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morschhauser J et al (1994) Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: cross-talk between different adhesin gene clusters. Mol Microbiol 11(3):555–566

    Article  CAS  PubMed  Google Scholar 

  • Mulvey MA et al (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282(5393):1494–1497

    Article  CAS  PubMed  Google Scholar 

  • Pichon C et al (2012) An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains. Nucl Acids Res 40(7):2846–2861

    Article  CAS  PubMed  Google Scholar 

  • Reigstad CS, Hultgren SJ, Gordon JI (2007) Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J Biol Chem 282(29):21259–21267

    Article  CAS  PubMed  Google Scholar 

  • Reisner A et al (2014) Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli. J Bacteriol 196(5):931–939

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts JA et al (1994) The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci U S A 91(25):11889–11893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumbaugh KP et al (2009) Quorum sensing and the social evolution of bacterial virulence. Curr Biol 19(4):341–345

    Article  CAS  PubMed  Google Scholar 

  • Schembri MA et al (2005) Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun 73(8):4626–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwan WR et al (2005) Down-regulation of the kps region 1 capsular assembly operon following attachment of Escherichia coli type 1 fimbriae to d-mannose receptors. Infect Immun 73(2):1226–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwan WR (2011) Regulation of genes in uropathogenic. World J Clin Infect Dis 1(1):17–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivick KE, Mobley HL (2010) Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 78(2):568–585

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom AE et al (2009) The SfaXII protein from newborn meningitis E. coli is involved in regulation of motility and type 1 fimbriae expression. Microb Pathog 46(5):243–252

    Article  PubMed  Google Scholar 

  • Snyder JA et al (2005) Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 73(11):7588–7596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohanpal BK et al (2007) Multiple co-regulatory elements and IHF are necessary for the control of fimB expression in response to sialic acid and N-acetylglucosamine in Escherichia coli K-12. Mol Microbiol 63(4):1223–1236

    Article  CAS  PubMed  Google Scholar 

  • Staerk K et al (2015) Uropathogenic Escherichia coli express type 1 fimbriae only in surface adherent populations under physiological growth conditions. J Infect Dis. doi:10.1093/infdis/jiv422

    PubMed  Google Scholar 

  • Stahlhut SG et al (2012) Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol Med Microbiol 65(2):350–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stintzi A et al (1998) Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 166(2):341–345

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen E et al (2015) Making pathogens sociable: the emergence of high relatedness through limited host invasibility. ISME J 9(10):2328

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Woude MW (2011) Phase variation: how to create and coordinate population diversity. Curr Opin Microbiol 14(2):205–211

    Article  PubMed  Google Scholar 

  • Wurpel DJ et al (2013) Chaperone-usher fimbriae of Escherichia coli. PLoS ONE 8(1):e52835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y et al (2000) Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB protein. EMBO J 19(7):1450–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Møller-Jensen.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandige, S., Møller-Jensen, J. Fimbrial phase variation: stochastic or cooperative?. Curr Genet 62, 237–241 (2016). https://doi.org/10.1007/s00294-015-0529-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0529-3

Keywords

Navigation