Skip to main content
Log in

Lack of the catalytic subunit of telomerase leads to growth defects accompanied by structural changes at the chromosomal ends in Yarrowia lipolytica

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Comparative analysis of the telomeres of distantly related species has proven to be helpful for identifying novel components involved in telomere maintenance. We therefore initiated such a study in the nonconventional yeast Yarrowia lipolytica. Its genome encodes only a small fraction of the proteins that are typically associated with telomeres in other yeast models, indicating that its telomeres may employ noncanonical means for their stabilization and maintenance. In this report, we have measured the size of the telomeric fragments in wild-type strains, and characterized the catalytic subunit of telomerase (YlEst2p). In silico analysis of the YlEst2 amino acid sequence revealed the presence of domains typical for telomerase reverse transcriptases. Disruption of YlEST2 is not lethal, but results in retarded growth accompanied by a rapid loss of the telomeric sequences. This phenotype is associated with structural changes at the chromosomal ends in the ΔYlest2 mutants, likely the circularization of all six chromosomes. An apparent absence of several typical telomere-associated factors, as well as the presence of an efficient means of telomerase-independent telomere maintenance, qualify Y. lipolytica as an attractive model for the study of telomere maintenance mechanisms and a promising source of novel players in telomere dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237

    Article  CAS  PubMed  Google Scholar 

  • Baumann P, Cech TR (2000) Protection of telomeres by the Ku protein in fission yeast. Mol Biol Cell 11:3265–3275

    CAS  PubMed  Google Scholar 

  • Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292:1171–1175

    Article  CAS  PubMed  Google Scholar 

  • Bianchi A, Shore D (2007) Increased association of telomerase with short telomeres in yeast. Genes Dev 21:1726–1730

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–56

    Article  CAS  PubMed  Google Scholar 

  • Brandt U, Abdrakhmanova A, Zickermann V, Galkin A, Drose S, Zwicker K, Kerscher S (2005) Structure-function relationships in mitochondrial complex I of the strictly aerobic yeast Yarrowia lipolytica. Biochem Soc Trans 33:840–844

    Article  CAS  PubMed  Google Scholar 

  • Casaregola S, Feynerol C, Diez M, Fournier P, Gaillardin C (1997) Genomic organization of the yeast Yarrowia lipolytica. Chromosoma 106:380–390

    Article  CAS  PubMed  Google Scholar 

  • Chen DC, Beckerich JM, Gaillardin C (1997) One-step transformation of the dimorphic yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 48:232–235

    Article  CAS  PubMed  Google Scholar 

  • Cohn M, Liti G, Barton DBH (2006) Telomeres in fungi. In: Sunnerhagen P, Piskur J (eds) Topics in current genetics. Comparative genomics series, pp 101–130

  • Cooper JP (2000) Telomere transitions in yeast: the end of the chromosome as we know it. Curr Opin Genet Dev 10:169–177

    Article  CAS  PubMed  Google Scholar 

  • Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385:744–747

    Article  CAS  PubMed  Google Scholar 

  • Craven RJ, Greenwell PW, Dominska M, Petes TD (2002) Regulation of genome stability by TEL1 and MEC1, yeast homologs of the mammalian ATM and ATR genes. Genetics 161:493–507

    CAS  PubMed  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  Google Scholar 

  • Diede SJ, Gottschling DE (1999) Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99:723–733

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.8. http://www.geneious.com/

  • Evans SK, Lundblad V (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286:117–120

    Article  CAS  PubMed  Google Scholar 

  • Feldmann H (2000) Genolevures—a novel approach to ‘evolutionary genomics’. FEBS Lett 487:1–2

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MG, Cooper JP (2001) The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol Cell 7:55–63

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MG, Miller KM, Cooper JP (2004) Indecent exposure: when telomeres become uncapped. Mol Cell 13:7–18

    Article  CAS  PubMed  Google Scholar 

  • Fulton TB, Blackburn EH (1998) Identification of Kluyveromyces lactis telomerase: discontinuous synthesis along the 30-nucleotide-long templating domain. Mol Cell Biol 18:4961–4970

    CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/ssDNA/PEG procedure. Yeast 11:355–360

    Article  CAS  PubMed  Google Scholar 

  • Grandin N, Reed SI, Charbonneau M (1997) Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 11:512–527

    Article  CAS  PubMed  Google Scholar 

  • Grandin N, Damon C, Charbonneau M (2001) Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J 20:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  CAS  PubMed  Google Scholar 

  • Greider CW, Blackburn EH (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51:887–898

    Article  CAS  PubMed  Google Scholar 

  • Gunisova S, Elboher E, Nosek J, Gorkovoy V, Brown Y, Lucier JF, Laterreur N, Wellinger RJ, Tzfati Y, Tomaska L (2009) Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA 15:546–559

    Article  CAS  PubMed  Google Scholar 

  • Guthrie C, Fink GR (1981) Methods in enzymology: guide to yeast genetics and molecular biology. Academic Press, San Diego, p 609

    Google Scholar 

  • Hughes TR, Evans SK, Weilbaecher RG, Lundblad V (2000) The Est3 protein is a subunit of yeast telomerase. Curr Biol 10:809–812

    Article  CAS  PubMed  Google Scholar 

  • Kanoh J, Ishikawa F (2003) Composition and conservation of the telomeric complex. Cell Mol Life Sci 60:2295–2302

    Article  CAS  PubMed  Google Scholar 

  • Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144:1399–1412

    CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232

    Article  CAS  PubMed  Google Scholar 

  • Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567

    Article  CAS  PubMed  Google Scholar 

  • Lue NF (2010) Plasticity of telomere maintenance mechanisms in yeast. Trends Biochem Sci 35:8–17

    Article  CAS  PubMed  Google Scholar 

  • Lundblad V (1998) Telomerase catalysis: a phylogenetically conserved reverse transcriptase. Proc Natl Acad Sci USA 95:8415–8416

    Article  CAS  PubMed  Google Scholar 

  • Lundblad V (2000) DNA ends: maintenance of chromosome termini versus repair of double strand breaks. Mutat Res 451:227–240

    CAS  PubMed  Google Scholar 

  • Marcand S, Brevet V, Mann C, Gilson E (2000) Cell cycle restriction of telomere elongation. Curr Biol 10:487–490

    Article  CAS  PubMed  Google Scholar 

  • McEachern MJ, Krauskopf A, Blackburn EH (2000) Telomeres and their control. Annu Rev Genet 34:331–358

    Article  CAS  PubMed  Google Scholar 

  • Myung K, Chen C, Kolodner RD (2001) Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411:1073–1076

    Article  CAS  PubMed  Google Scholar 

  • Naito T, Matsuura A, Ishikawa F (1998) Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nat Genet 20:203–206

    Article  CAS  PubMed  Google Scholar 

  • Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959

    Article  CAS  PubMed  Google Scholar 

  • Nakamura TM, Cooper JP, Cech TR (1998) Two modes of survival of fission yeast without telomerase. Science 282:493–496

    Article  CAS  PubMed  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DW 2nd (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW. News 4:14

    Google Scholar 

  • Nosek J, Fukuhara H (1994) NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J Bacteriol 176:5622–5630

    CAS  PubMed  Google Scholar 

  • Nuttley WM, Brade AM, Eitzen GA, Veenhuis M, Aitchison JD, Szilard RK, Glover JR, Rachubinski RA (1994) PAY4, a gene required for peroxisome assembly in the yeast Yarrowia lipolytica, encodes a novel member of a family of putative ATPases. J Biol Chem 269:556–566

    CAS  PubMed  Google Scholar 

  • Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    Article  CAS  PubMed  Google Scholar 

  • Pennock E, Buckley K, Lundblad V (2001) Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104:387–396

    Article  CAS  PubMed  Google Scholar 

  • Pertuiset B, Beckerich JM, Gaillardin C (1995) Molecular cloning of Rab-related genes in the yeast Yarrowia lipolytica. Analysis of RYL1, an essential gene encoding a SEC4 homologue. Curr Genet 27:123–130

    Article  CAS  PubMed  Google Scholar 

  • Rhodin EJ (2009) Functional studies of telomere-binding proteins in Saccharomyces castelii. PhD thesis, Department of cell and organism biology, Lund University

  • Rhodin EJ, Astromskas E, Cohn M (2006) Characterization of the DNA binding features of Saccharomyces castellii Cdc13p. J Mol Biol 355:335–346

    Article  CAS  PubMed  Google Scholar 

  • Rhodin EJ, Tati R, Cohn M (2008) Highly sequence-specific binding is retained within the DNA-binding domain of the Saccharomyces castellii Cdc13 telomere-binding protein. FEMS Yeast Res 8:1289–1302

    Article  Google Scholar 

  • Richard M, Quijano RR, Bezzate S, Bordon-Pallier F, Gaillardin C (2001) Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. J Bacteriol 183:3098–3107

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Singh SM, Steinberg-Neifach O, Mian IS, Lue NF (2002) Analysis of telomerase in Candida albicans: potential role in telomere end protection. Eukaryot Cell 1:967–977

    Article  CAS  PubMed  Google Scholar 

  • Szabo R (1999) Dimorphism in Yarrowia lipolytica: filament formation is suppressed by nitrogen starvation and inhibition of respiration. Folia Microbiol 44:19–24

    Article  CAS  Google Scholar 

  • Szabo R (2001) Study of cell morphogenesis and differentiation on yeast Yarrowia lipolytica. PhD thesis, Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 118 pp

  • Teixeira MT, Gilson E (2005) Telomere maintenance, function and evolution: the yeast paradigm. Chromosome Res 13:535–548

    Article  CAS  PubMed  Google Scholar 

  • Teng SC, Zakian VA (1999) Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19:8083–8093

    CAS  PubMed  Google Scholar 

  • Wang X, Baumann P (2008) Chromosome fusions following telomere loss are mediated by single-strand annealing. Mol Cell 31:463–473

    Article  CAS  PubMed  Google Scholar 

  • Watson JD (1972) Origin of concatemeric T7 DNA. Nat New Biol 239:197–201

    Article  CAS  PubMed  Google Scholar 

  • Webb CJ, Zakian VA (2008) Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA. Nat Struct Mol Biol 15:34–42

    Article  CAS  PubMed  Google Scholar 

  • Zakian VA (1995) Telomeres: beginning to understand the end. Science 270:1601–1607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Ladislav Kovac (Comenius University, Bratislava, Slovak republic) for inspiration and continuous support, as well as members of our laboratory for discussions. We thank Claude Gaillardin (INRA, Thiverval-Grignon, France) for providing the strains and the sequences of the Y. lipolytica chromosomal ends. We are indebted to two anonymous reviewers for very helpful comments and suggestions. This paper is dedicated to the 70th anniversary of the Faculty of Natural Sciences, Comenius University in Bratislava. This work was supported by grants from the Fogarty International Research Collaboration Award [2-R03-TW005654-04A1 (L.T.)], Howard Hughes Medical Institute [55005622 (J.N.)], the Slovak grant agencies APVT [20-001604 (L.T.) and 0024-07 (J.N.)], VEGA [1/0132/09 (L.T.) and 1/0219/08 (J.N.)] and Comenius University [UK/234/2006; UK/250/2007; UK/198/2008 (S.K.)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomir Tomaska.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 419 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinsky, S., Mihalikova, A., Kramara, J. et al. Lack of the catalytic subunit of telomerase leads to growth defects accompanied by structural changes at the chromosomal ends in Yarrowia lipolytica . Curr Genet 56, 413–425 (2010). https://doi.org/10.1007/s00294-010-0310-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-010-0310-6

Keywords

Navigation