Skip to main content
Log in

Telomere maintenance, function and evolution: the yeast paradigm

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Telomeres are multifunctional genetic elements that cap chromosome ends, playing essential roles in genome stability, chromosome higher-order organization and proliferation control. The telomere field has largely benefited from the study of unicellular eukaryotic organisms such as yeasts. Easy cultivation in laboratory conditions and powerful genetics have placed mainly Saccharomyces cerevisiae, Kluveromyces lactis and Schizosaccharomyces pombe as crucial model organisms for telomere biology research. Studies in these species have made it possible to elucidate the basic mechanisms of telomere maintenance, function and evolution. Moreover, comparative genomic analyses show that telomeres have evolved rapidly among yeast species and functional plasticity emerges as one of the driving forces of this evolution. This provides a precious opportunity to further our understanding of telomere biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai W, Bertram PG, Tsang CK, Chan TF, Zheng XF (2002) Regulation of subtelomeric silencing during stress response. Mol Cell 10: 1295–1305.

    Article  PubMed  Google Scholar 

  • Alexander MK, Zakian VA (2003) Rap1p telomere association is not required for mitotic stability of a C(3)TA(2) telomere in yeast. EMBO J 22: 1688–1696.

    Article  PubMed  Google Scholar 

  • Andrulis ED, Neiman AM, Zappulla DC, Sternglanz R (1998) Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394: 592–595.

    Article  PubMed  Google Scholar 

  • Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66: 1279–1287.

    Article  PubMed  Google Scholar 

  • Askree SH, Yehuda T, Smolikov S et al. (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci USA 101: 8658–8663.

    Article  PubMed  Google Scholar 

  • Bah A, Bachand F, Clair E, Autexier C, Wellinger RJ (2004) Humanized telomeres and an attempt to express a functional human telomeres in yeast. Nucleic Acids Res 32: 1917–1927.

    Article  PubMed  Google Scholar 

  • Balakrishnan R, Christie KR, Costanzo MC et al. (2005) Fungal BLAST and model organism BLASTP best hits: new comparison resources at the Saccharomyces Genome Database (SGD). Nucleic Acids Res 33: D374–D377.

    Article  PubMed  Google Scholar 

  • Bilaud T, Koering CE, Binet-Brasselet E et al. (1996) The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res 24: 1294–1303.

    Article  PubMed  Google Scholar 

  • Blackburn EH (2000) Telomere states and cell fates. Nature 408: 53–56.

    Article  PubMed  Google Scholar 

  • Blackburn EH, Greider CW, eds, Telomeres. Plainview, N.Y.: Cold Spring Harbor Laboratory Press, pp. 11–34.

  • Borkovich KA, Alex LA, Yarden O et al. (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68: 1–108, table of contents.

    Google Scholar 

  • Brevet V, Berthiau AS, Civitelli L et al. (2003) The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms. EMBO J 22: 1697–1706.

    PubMed  Google Scholar 

  • Brun C, Marcand S, Gilson E (1997) Proteins that bind to double-stranded regions of telomeric DNA. Trends Cell Biol 7: 317–324.

    Article  Google Scholar 

  • Brunori M, Luciano P, Gilson E, Geli V (2005) The telomerase cycle: normal and pathological aspects. J Mol Med. 83: 244–257.

    Google Scholar 

  • Bucholc M, Park Y, Lustig AJ (2001) Intrachromatid excision of telomeric DNA as a mechanism for telomere size control in Saccharomyces cerevisiae. Mol Cell Biol 21: 6559–6573.

    Article  PubMed  Google Scholar 

  • Castano I, Pan SJ, Zupancic M, Hennequin C, Dujon B, Cormack BP (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55: 1246–1258.

    Article  PubMed  Google Scholar 

  • Chakhparonian M, Wellinger RJ (2003) Telomere maintenance and DNA replication: how closely are these two connected? Trends Genet 19: 439–446.

    Article  PubMed  Google Scholar 

  • Cohn M, McEachern MJ, Blackburn EH (1998) Telomeric sequence diversity within the genus Saccharomyces. Curr Genet 33: 83–91.

    Article  PubMed  Google Scholar 

  • Cooper JP, Nimmo ER, Allshire RC, Cech TR (1997) Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385: 744–747.

    Article  PubMed  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ et al. (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980.

    Article  PubMed  Google Scholar 

  • Diede SJ, Gottschling DE (1999) Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99: 723–733.

    PubMed  Google Scholar 

  • Dietrich FS, Voegeli S, Brachat S et al. (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304: 304–307.

    Article  PubMed  Google Scholar 

  • Dionne I, Wellinger RJ (1998) Processing of telomeric DNA ends requires the passage of a replication fork. Nucleic Acids Res 26: 5365–5371.

    Article  PubMed  Google Scholar 

  • Dujon B, Sherman D, Fischer G et al. (2004) Genome evolution in yeasts. Nature 430: 35–44.

    Article  PubMed  Google Scholar 

  • Etheridge KT, Banik SS, Armbruster BN et al. (2002) The nucleolar localization domain of the catalytic subunit of human telomerase. J Biol Chem 277: 24764–24770.

    Article  PubMed  Google Scholar 

  • Evans SK, Lundblad V (1999) Est1 and Cdc13 as comediators of telomerase access. Science 286: 117–120.

    Article  PubMed  Google Scholar 

  • Fabre E, Muller H, Therizols P, Lafontaine I, Dujon B, Fairhead C (2005) Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. Mol Biol Evol 22: 856–873.

    Article  PubMed  Google Scholar 

  • Ferreira MG, Cooper JP (2001) The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol Cell 7: 55–63.

    Article  PubMed  Google Scholar 

  • Figueiredo LM, Rocha EP, Mancio-Silva L, Prevost C, Hernandez-Verdun D, Scherf A (2005) The unusually large Plasmodium telomerase reverse-transcriptase localizes in a discrete compartment associated with the nucleolus. Nucleic Acids Res 33: 1111–1122.

    Article  PubMed  Google Scholar 

  • Fisher TS, Taggart AK, Zakian VA (2004) Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol. 11: 1198–1205.

    Google Scholar 

  • Forstemann K, Lingner J (2001) Molecular basis for telomere repeatdivergence in budding yeast. Mol Cell Biol 21: 7277–7286.

    Article  PubMed  Google Scholar 

  • Forstemann K, Zaug AJ, Cech TR, Lingner J (2003) Yeast telomerase is specialized for C/A-rich RNA templates. Nucleic Acids Res 31: 1646–1655.

    Article  PubMed  Google Scholar 

  • Fourel G, Revardel E, Koering CE, Gilson E (1999) Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J 18: 2522–2537.

    Article  PubMed  Google Scholar 

  • Fu G, Barker DC (1998) Characterisation of Leishmania telomeres reveals unusual telomeric repeats and conserved telomere-associated sequence. Nucleic Acids Res 26: 2161–2167.

    Article  PubMed  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphictools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12: 543–548.

    PubMed  Google Scholar 

  • Gartenberg MR, Neumann FR, Laroche T, Blaszczyk M, Gasser SM (2004) Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119: 955–967.

    Article  PubMed  Google Scholar 

  • Gilley D, Lee MS, Blackburn EH (1995) Altering specific telomerase RNA template residues affects active site function. Genes Dev 9: 2214–2226.

    PubMed  Google Scholar 

  • Gilson E, Gasser SM (1995) Repressor activator protein 1 and its ligands: organising chromatin domains. Nucleic Acids Mol Biol 9: 308–327.

    Google Scholar 

  • Gilson P, McFadden GI (1995) The chlorarachniophyte: a cell with two different nuclei and two different telomeres. Chromosoma 103: 635–641.

    PubMed  Google Scholar 

  • Gilson E, Roberge M, Giraldo R, Rhodes D, Gasser SM (1993) Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J Mol Biol 231: 293–310.

    Article  PubMed  Google Scholar 

  • Gilson E, Muller T, Sogo J, Laroche T, Gasser SM (1994) RAP1 stimulates single- to double-strand association of yeast telomeric DNA: implications for telomere–telomere interactions. Nucleic Acids Res 22: 5310–5320.

    PubMed  Google Scholar 

  • Giraldo R, Rhodes D (1994) The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J 13: 2411–2420.

    PubMed  Google Scholar 

  • Gotta M, Laroche T, Formenton A, Maillet L, Scherthan H, Gasser SM (1996) The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J Cell Biol 134: 1349–1363.

    Article  PubMed  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751–762.

    Article  PubMed  Google Scholar 

  • Grandin N, Reed SI, Charbonneau M (1997) Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 11: 512–527.

    PubMed  Google Scholar 

  • Grandin N, Damon C, Charbonneau M (2001) Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J 20: 1173–1183.

    Article  PubMed  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405–413.

    Article  PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–514.

    Article  PubMed  Google Scholar 

  • Gurevich R, Smolikov S, Maddar H, Krauskopf A (2003) Mutant telomeres inhibit transcriptional silencing at native telomeres of the yeast Kluyveromyces lactis. Mol Genet Genom 268: 729–738.

    Google Scholar 

  • Haw R, Yarragudi AD, Uemura H (2001) Isolation of a Candida glabrata homologue of RAP1, a regulator of transcription and telomere function in Saccharomyces cerevisiae. Yeast 18: 1277–1284.

    Article  PubMed  Google Scholar 

  • Hediger F, Gasser SM (2002) Nuclear organization and silencing: putting things in their place. Nat Cell Biol 4: E53– E55.

    Article  PubMed  Google Scholar 

  • Henderson E (1995) Telomere DNA structure. In: Blackburn EH, Greider CW, eds. Telomeres. NY: Cold Spring Harbor Laboratory Press, pp. 11–34.

  • Henderson ER, Blackburn EH (1989) An overhanging 3′ terminus is a conserved feature of telomeres. Mol Cell Biol 9: 345–348.

    PubMed  Google Scholar 

  • Henning KA, Moskowitz N, Ashlock MA, Liu PP (1998) Humanizing the yeast telomerase template. Proc Natl Acad Sci USA 95: 5667–5671.

    Article  PubMed  Google Scholar 

  • Holmes SG, Broach JR (1996) Silencers are required for the inheritance of the repressed state in yeast. Genes Dev 10: 1021–1032.

    PubMed  Google Scholar 

  • Huang X, Miller W (1991) A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12: 337.

    Google Scholar 

  • Hunt C, Moore K, Xiang Z et al. (2001) Subtelomeric sequence from the right arm of Schizosaccharomyces pombe chromosome I contains seven permease genes. Yeast 18: 355–361.

    Article  PubMed  Google Scholar 

  • Jones T, Federspiel NA, Chibana H et al. (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA 101: 7329–7334.

    PubMed  Google Scholar 

  • Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11: 1624–1630.

    Article  PubMed  Google Scholar 

  • Kelleher C, Teixeira MT, Forstemann K, Lingner J (2002) Telomerase: biochemical considerations for enzyme and substrate. Trends Biochem Sci 27: 572–579.

    PubMed  Google Scholar 

  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241–254.

    Article  PubMed  Google Scholar 

  • Konig P, Giraldo R, Chapman L, Rhodes D (1996) The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85: 125–136.

    Article  PubMed  Google Scholar 

  • Larson GP, Castanotto D, Rossi JJ, Malafa MP (1994) Isolation and functional analysis of a Kluyveromyces lactis RAP1 homologue. Gene 150: 35–41.

    PubMed  Google Scholar 

  • Lebrun E, Fourel G, Defossez PA, Gilson E (2003) A methyltransferase targeting assay reveals silencer-telomere interactions in budding yeast. Mol Cell Biol 23: 1498–1508.

    Article  PubMed  Google Scholar 

  • Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V (1996) Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144: 1399–1412.

    PubMed  Google Scholar 

  • Li B, Oestreich S, de Lange T (2000) Identification of human Rap1: implications for telomere evolution. Cell 101: 471–483.

    Article  PubMed  Google Scholar 

  • Lin JJ, Zakian VA (1996) The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc Natl Acad Sci USA 93: 13760–13765.

    Article  PubMed  Google Scholar 

  • Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.

    PubMed  Google Scholar 

  • Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13: 660–665.

    PubMed  Google Scholar 

  • Louis EJ (1994) Corrected sequence for the right telomere of Saccharomyces cerevisiae chromosome III. Yeast 10: 271–274.

    Article  PubMed  Google Scholar 

  • Lundblad V (2000) DNA ends: maintenance of chromosome termini versus repair of double strand breaks. Mutat Res 451: 227–240.

    PubMed  Google Scholar 

  • Lundblad V, Szostak JW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633–643.

    Article  PubMed  Google Scholar 

  • Maillet L, Boscheron C, Gotta M, Marcand S, Gilson E, Gasser SM (1996) Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev 10: 1796–1811.

    PubMed  Google Scholar 

  • Maillet L, Gaden F, Brevet V et al. (2001) Ku-deficient yeast strains exhibit alternative states of silencing competence. EMBO Rep 2: 203–210.

    Article  PubMed  Google Scholar 

  • Marcand S, Buck SW, Moretti P, Gilson E, Shore D (1996a) Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap 1 protein. Genes Dev 10: 1297–1309.

    PubMed  Google Scholar 

  • Marcand S, Gasser SM, Gilson E (1996b) Chromatin: a sticky silence. Curr Biol 6: 1222–1225.

    Article  PubMed  Google Scholar 

  • Marcand S, Gilson E, Shore D (1997) A protein-counting mechanism for telomere length regulation in yeast. Science 275: 986–990.

    Article  PubMed  Google Scholar 

  • Marcand S, Brevet V, Gilson E (1999) Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J 18: 3509–3519.

    Article  PubMed  Google Scholar 

  • Marcand S, Brevet V, Mann C, Gilson E (2000) Cell cycle restriction of telomere elongation. Curr Biol 10: 487–490.

    Article  PubMed  Google Scholar 

  • McEachern MJ, Blackburn EH (1994) A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts. Proc Natl Acad Sci USA 91: 3453–3457.

    PubMed  Google Scholar 

  • McEachern MJ, Blackburn EH (1995) Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 376: 403–409.

    Article  PubMed  Google Scholar 

  • Mitton-Fry RM, Anderson EM, Hughes TR, Lundblad V, Wuttke DS (2002) Conserved structure for single-stranded telomeric DNA recognition. Science 296: 145–147.

    Article  PubMed  Google Scholar 

  • Moretti P, Freeman K, Coodly L, Shore D (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev 8: 2257–2269.

    PubMed  Google Scholar 

  • Muller T, Gilson E, Schmidt R et al. (1994) Imaging the asymmetrical DNA bend induced by repressor activator protein 1 with scanning tunneling microscopy. J Struct Biol 113: 1–12.

    Article  PubMed  Google Scholar 

  • Murchie AI, Lilley DM (1994) Tetraplex folding of telomere sequences and the inclusion of adenine bases. EMBO J 13: 993–1001.

    PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205–217.

    PubMed  Google Scholar 

  • Pennock E, Buckley K, Lundblad V (2001) Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104: 387–396.

    Article  PubMed  Google Scholar 

  • Perez-Ortin JE, Querol A, Puig S, Barrio E (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12: 1533–1539.

    Article  PubMed  Google Scholar 

  • Perrod S, Gasser SM (2003) Long-range silencing and position effects at telomeres and centromeres: parallels and differences. Cell Mol Life Sci 60: 2303–2318.

    Article  PubMed  Google Scholar 

  • Peyret P, Katinka MD, Duprat S et al. (2001) Sequence and analysis of chromosome I of the amitochondriate intracellular parasite Encephalitozoon cuniculi (Microspora). Genome Res 11: 198–207.

    Article  PubMed  Google Scholar 

  • Prangishvili D, Garrett RA (2004) Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans 32: 204–208.

    Article  PubMed  Google Scholar 

  • Prescott J, Blackburn EH (1997) Telomerase RNA mutations in Saccharomyces cerevisiae alter telomerase action and reveal nonprocessivity in vivo and in vitro. Genes Dev 11: 528–540.

    PubMed  Google Scholar 

  • Pryde FE, Louis EJ (1999) Limitations of silencing at native yeast telomeres. EMBO J 18: 2538–2550.

    Article  PubMed  Google Scholar 

  • Pryde FE, Gorham HC, Louis EJ (1997) Chromosome ends: all the same under their caps. Curr Opin Genet Dev 7: 822–828.

    Article  PubMed  Google Scholar 

  • Richard GF, Kerrest A, Lafontaine I, Dujon B (2005) Comparative genomics of hemiascomycete yeasts: genes involved in DNA replication, repair, and recombination. Mol Biol Evol 22: 1011–1023.

    Article  PubMed  Google Scholar 

  • Rocha EP, Danchin A (2001) Ongoing evolution of strand composition in bacterial genomes. Mol Biol Evol 18: 1789–1799.

    PubMed  Google Scholar 

  • Schramke V, Luciano P, Brevet V et al. (2004) RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat Genet 36: 46–54.

    PubMed  Google Scholar 

  • Schulz VP, Zakian VA (1994) The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76: 145–155.

    Article  PubMed  Google Scholar 

  • Shore D (1994) RAP1: a protean regulator in yeast. Trends Genet 10: 408–412.

    Article  PubMed  Google Scholar 

  • Shore D, Nasmyth K (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51: 721–732.

    Article  PubMed  Google Scholar 

  • Singer MS, Gottschling DE (1994) TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266: 404–409.

    PubMed  Google Scholar 

  • Singer MS, Kahana A, Wolf AJ et al. (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150: 613–632.

    PubMed  Google Scholar 

  • Sipiczki M (2000) Where does fission yeast sit on the tree of life? Genome Biol 1: reviews 1011–1014.

    Article  Google Scholar 

  • Smogorzewska A, de Lange T (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73: 177–208.

    Google Scholar 

  • Taddei A, Gasser SM (2004) Multiple pathways for telomere tethering: functional implications of subnuclear position for heterochromatin formation. Biochim Biophys Acta 1677: 120–128.

    PubMed  Google Scholar 

  • Taggart AK, Teng SC, Zakian VA (2002) Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297: 1023–1026.

    Article  PubMed  Google Scholar 

  • Takata H, Tanaka Y, Matsuura A (2005) Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol Cell 17: 573–583.

    Article  PubMed  Google Scholar 

  • Teixeira MT, Forstemann K, Gasser SM, Lingner J (2002) Intracellular trafficking of yeast telomerase components. EMBO Rep 3: 652–659.

    Article  PubMed  Google Scholar 

  • Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117: 323–335.

    PubMed  Google Scholar 

  • Tham WH, Wyithe JS, Ferrigno PK, Silver PA, Zakian VA (2001) Localization of yeast telomeres to the nuclear periphery is separable from transcriptional repression and telomere stability functions. Mol Cell 8: 189–199.

    Article  PubMed  Google Scholar 

  • Uemura H, Watanabe-Yoshida M, Ishii N, Shinzato T, Haw R, Aoki Y (2004) Isolation and characterization of Candida albicans homologue of RAP1, a repressor and activator protein gene in Saccharomyces cerevisiae. Yeast 21: 1–10.

    Article  PubMed  Google Scholar 

  • Vassetzky NS, Gaden F, Brun C, Gasser SM, Gilson E (1999) Taz1p and Teb1p, two telobox proteins in Schizosaccharomyces pombe, recognize different telomere-related DNA sequences. Nucleic Acids Res 27: 4687–4694.

    Article  PubMed  Google Scholar 

  • Venczel EA, Sen D (1993) Parallel and antiparallel G-DNA structures from a complex telomeric sequence. Biochemistry 32: 6220–6228.

    Article  PubMed  Google Scholar 

  • Vignais ML, Huet J, Buhler JM, Sentenac A (1990) Contacts between the factor TUF and RPG sequences. J Biol Chem 265: 14669–14674.

    PubMed  Google Scholar 

  • Volff JN, Altenbuchner J (2000) A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol Lett 186: 143–150.

    Article  PubMed  Google Scholar 

  • Wellinger RJ, Ethier K, Labrecque P, Zakian VA (1996) Evidence for a new step in telomere maintenance. Cell 85: 423–433.

    Article  PubMed  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA et al. (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415: 871–880.

    Article  PubMed  Google Scholar 

  • Wotton D, Shore D (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in S. cerevisiae. Genes Dev 11: 748–760.

    PubMed  Google Scholar 

  • Wright JH, Gottschling DE, Zakian VA (1992) Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev 6: 197–210.

    PubMed  Google Scholar 

  • Zakian VA (1995) Telomeres: beginning to understand the end. Science 270: 1601–1607.

    PubMed  Google Scholar 

  • Zauner S, Fraunholz M, Wastl J et al. (2000) Chloroplast protein and centrosomal genes, a tRNA intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph. Proc Natl Acad Sci USA 97: 200–205.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, M.T., Gilson, E. Telomere maintenance, function and evolution: the yeast paradigm. Chromosome Res 13, 535–548 (2005). https://doi.org/10.1007/s10577-005-0999-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-0999-0

Key words

Navigation