Skip to main content
Log in

Phylogenetic relationship and diversity among Agropyron Gaertn. germplasm using SSRs markers

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

To evaluate the genetic diversity within the genus Agropyron Gaertn. and investigate phylogenetic relationships of species in the genus, 103 populations collected from northern China, including 18 A. desertorum, 12 A. mongolicum, four A. michnoi, and 69 A. cristatum populations, were analyzed using 29 polymorphic simple sequence repeat (SSR) primers mapped on the wheat genome. Mean number of polymorphic alleles in A. cristatum, A. desertorum, A. mongolicum, and A. michnoi was 10.41, 8.66, 6.69 and 4.52, respectively, and were significantly different (P < 0.01). The mean genetic diversity in A. cristatum, A. desertorum, A. mongolicum, and A. michnoi was 0.76, 0.71, 0.63 and 0.62, respectively, and were significantly different (P < 0.05). The largest genetic distance (1.06) among the 103 populations was found between Z1593 and Z1994, two A. cristatum populations, and the smallest genetic distance (0.02) was observed between Z605 and Z618, also two A. cristatum populations. The AMOVA analysis showed 12.0 % of the total variation resided among species, and 88.0 % resided within species. The unweighted pair group method with arithmetic average phenogram indicated the populations from the same species and similar eco-geographical regions had close genetic relationship. Furthermore, populations of A. desertorum, A. mongolicum and A. michnoi were distinguished from populations of A. cristatum using the principal coordinate analysis. The results obtained using SSR markers suggest that A. desertorum, A. mongolicum and A. michnoi should be offspring species of A. cristatum sharing the same basic genome from the counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asay KH, Jensen KB, Hsiao C, Dewey DR (1992) Probable origin of standard crested wheatgrass, Agropyron desertorum Fisch ex Link, Schultes. Canad J Pl Sci 72(3):763–772. doi:10.4141/cjps92-092

    Article  Google Scholar 

  • Baek HJ, Beharav A, Nevo E (2003) Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theor Appl Genet 106(3):397–410. doi:10.1007/s00122-002-1029-7

    CAS  PubMed  Google Scholar 

  • Bertin P, Grégoire D, Massart S, de Froidmont D (2004) High level of genetic diversity among spelt germplasm revealed by microsatellite markers. Genome 47(6):1043–1052. doi:10.1139/g04-065

    Article  CAS  PubMed  Google Scholar 

  • Che YH, Li LH (2007) Genetic diversity of prolamines in Agropyron mongolicum Keng indigenous to northern China. Genet Resour Crop Ev 54(5):1145–1151. doi:10.1007/s10722-006-9006-7

    Article  CAS  Google Scholar 

  • Che YH, Li HJ, Yang YP, Yang XM, Li XQ, Li LH (2008) On the use of SSR markers for the genetic characterization of the Agropyron cristatum (L.) Gaertn. in northern China. Genet Resour Crop Ev 55(3):389–396. doi:10.1007/s10722-007-9246-1

    Article  Google Scholar 

  • Che YH, Yang YP, Yang XM, Li XQ, Li LH (2011) Genetic diversity comparing between ex situ and in situ samples of Agropyron cristatum (L.) Gaertn. based on SSR molecular markers. Crop Pasture Sci 62(8):639–644. doi:10.1071/CP11065

    Article  Google Scholar 

  • Deniz B, Dogru U (2006) Meiotic behaviour in natural diploid, tetraploid, and commercial diploid crested wheatgrass. NZL J Agri Res 49(4):405–409. doi:10.1080/00288233.2006.9513731

    Article  Google Scholar 

  • Dewey DR (1961) Polyhaploids of crested wheatgrass. Crop Sci 1(4):249–254

    Article  Google Scholar 

  • Dewey DR (1963) Cytology and morphology of a synthetic Agropyron trichophorum × Agropyron desertorum hybrid. Amer J Bot 50(6): 552–562. Available from http://www.jstor.org/stable/2440030. Accessed 14 Aug 2013

  • Dewey DR (1969) Hybrids between tetraploid and hexaploid crested wheatgrasses. Crop Sci 9(6):787–791

    Article  Google Scholar 

  • Dewey DR (1977) A method of transferring genes from tetraploid to diploid crested wheatgrass. Crop Sci 17(5):803–805

    Article  Google Scholar 

  • Dewey DR (1981) Forage resources and research in northern China. In: Agronomy abstracts. ASA, Madison, p 60

  • Dewey DR (1983) Historical and current taxonomic perspectives of Agropyron, Elymus, and related genera. Crop Sci 23(4):637–642

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification. A guide to intergenetic hybridization with the perennial Triticeae. In: Gustfeson JP (ed) Gene manipulation in plant improvement, 16th Stadler genetics symposium. Plenum Press, New York, pp 209–279

  • Dewey DR (1986) Taxonomy of the crested wheatgrass (Agropyron). In: Johnson KL (ed) Crested wheatgrass: its values, problems and myths. Utah State University, Logan, pp 31–44

    Google Scholar 

  • Dewey DR, Pendse PC (1967) Cytogenetics of crested wheatgrass triploids. Crop Sci 7(4):345–349

    Article  Google Scholar 

  • Dong YS, Zhou RH, Xu SJ, Li LH, Cauderon Y, Wang RRC (1992) Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas 116(1–2):175–178. doi:10.1111/j.1601-5223.1992.tb00224.x

    Google Scholar 

  • Dewey DR, Asay KH (1982) Cytogenetic and taxonomic relationships among three diploid crested wheatgrasses. Crop Sci 22:645–650

    Article  Google Scholar 

  • Hsiao C, Wang RRC, Dewey DR (1986) Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticaea. Canad J Genet Cyt 28(1):109–120. doi:10.1139/g86-015

    Article  Google Scholar 

  • Hsiao C, Asay KH, Dewey DR (1989) Cytogenetic analysis of interspecific hybrids and amphiploids between two diploid crested wheatgrasses, A. mongolicum and A. cristatum. Genome 32(6):1079–1084. doi:10.1139/g89-557

    Article  Google Scholar 

  • Jensen KB, Larson SR, Waldron BL, Asay KH (2006) Cytogenetic and molecular characterization of hybrids between 6x, 4x, and 2x ploidy levels in crested wheatgrass. Crop Sci 46(1):105–112. doi:10.2135/cropsci2005.0148

    Article  CAS  Google Scholar 

  • José MS, Carlos R, Santiago V, Gerardo L, Luisa BM (2005) Genetic diversity of loquat germplasm (Eriobotrya japonica (Thunb) Lindl) assessed by SSR markers. Genome 48(1):1108–1114. doi:10.1139/g04-101

    Google Scholar 

  • Knowles RP (1955) A study of variability in crested wheatgrass. Canad J Bot 33(6):534–546. doi:10.1139/b55-043

    Article  Google Scholar 

  • Kyndt T, Droogenbroeck BV, Haegeman A, Roldán-Ruiz I, Gheysen G (2006) Cross-species microsatellite amplification in Vasconcellea and related genera and their use in germplasm classification. Genome 49(7):786–798. doi:10.1139/G06-035

    Article  CAS  PubMed  Google Scholar 

  • Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45(6):1095–1106. doi:10.1139/g02-071

    Article  CAS  PubMed  Google Scholar 

  • Mellish A, Coulman B, Ferdinandez Y (2002) Genetic relationships among selected crested wheatgrass cultivars and species determined on the basis of AFLP markers. Crop Sci 42(5):1662–1668. doi:10.2135/cropsci2002.1662

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Amer Nat 106, 283–292. Available from http://www.jstor.org/stable/2459777. Accessed 14 Aug 2013

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70(12):3321–3323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nevskii SA (1934) Tribe XIV. Hordeae Benth. In: Komarov VL (ed) Flora USSR. The Botanical Institute of the Academy of Sciences of the USSR, Leningrad, Leningrad, pp 590–722

    Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43(4):689–697. doi:10.1139/gen-43-4-689

    Article  CAS  PubMed  Google Scholar 

  • Ray IM, Tokach MK (1992) Cytology of 2n pollen formation in diploid crested wheatgrass, Agropyron cristatum. Crop Sci 32(6):1361–1365

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) Microsatellite map of wheat. Genetics 149(4):2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Rogler GA, Lorenz RJ (1983) Crested wheatgrass: early history in the United States. J Range Mana 36(1): 91-93. Available from http://www.jstor.org/stable/3897991. Accessed 14 Aug 2013

  • Rohlf FJ (1998) NTSYS-PC numerical taxonomy and multivariate analysis system. Version 2.0. Exeter software [CP/DK]. Applied Biostatics Inc., New York

  • Saghai-Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Nat Acad Sci 91(12):5466–5470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz-Schaeffer J, Allerdice PW, Creel GC (1963) Segmental allopolyploidy in tetraploid and hexaploid Agropyron species of the crested wheatgrass complex (section Agropyron). Crop Sci 3(6):525–530

    Article  Google Scholar 

  • Taylor RJ, McCoy GA (1973) Proposed origin of tetraploid crested wheatgrass based on chromatographic and karyoptic analyses. Am J Bot 60:576–583

    Article  CAS  Google Scholar 

  • Teklu Y, Hammer K, Huang XQ, Roder MS (2006) Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces. Genet Resour Crop Ev 53(6):1115–1126. doi:10.1007/s10722-005-1146-7

    Article  CAS  Google Scholar 

  • Tzvelev NN (1976) Tribe 3. Triticeae Dum. Poaceae URSS. Nauka Publishing House, St. Petersburg, pp 105–206

    Google Scholar 

  • Vogel KP, Arumaganathan K, Jensen KB (1999) Nuclear DNA content of perennial grasses of the Triticeae. Crop Sci 39(3):661–667

    Article  Google Scholar 

  • Wang RRC (2011) Agropyron and psathyrostachys. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin/Heidelberg, pp 77–108. doi:10.1007/978-3-642-14228-4_2

    Chapter  Google Scholar 

  • Silvestrini M, Junqueira MG, Favarin AC, Guerreiro-Filho O, Maluf MP, Silvarolla MB, Colombo CA (2007) Genetic diversity and structure of Ethiopian, Yemen and Brazilian Coffea arabica L. accessions using microsatellites markers. Genet Resour Crop Ev 54(6):1367–1379. doi:10.1007/s10722-006-9122-4

  • Zhan QW, Zhang TZ, Wang BH, Li JQ (2008) Diversity comparison and phylogenetic relationships of S. bicolor and S. sudanense as revealed by SSR markers. Plant Sci 174(1):9–16. doi:10.1016/j.plantsci.2007.09.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Department of Science and Technology in Hebei Province, P.R. China (C2009000878) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghe Che or Lihui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, Y., Yang, Y., Yang, X. et al. Phylogenetic relationship and diversity among Agropyron Gaertn. germplasm using SSRs markers. Plant Syst Evol 301, 163–170 (2015). https://doi.org/10.1007/s00606-014-1062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1062-4

Keywords

Navigation