Skip to main content
Log in

Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering!

  • Review Article
  • Published:
Current Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the Apicomplexan, Cryptosporidium parvum. Science 304:441–445

    Article  PubMed  CAS  Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Browser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52(5):399–451

    Article  PubMed  Google Scholar 

  • Akhmanova A, Voncken FG, van Alen A, van Hoek A, Boxma B, Vogels GD, Veenhuis M, Hackstein JHP (1998a) A hydrogenosome with a genome. Nature 396:527–528

    Article  CAS  Google Scholar 

  • Akhmanova A, Voncken FGJ, Harhangi H, Hosea KM, Vogels GD, Hackstein JHP (1998b) Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp E2. Mol Microbiol 30:1017–1027

    Article  CAS  Google Scholar 

  • Akhmanova A, Voncken FGJ, Hosea KM, Harhangi H, Keltjens JT, op den CampHJ, Vogels GD, Hackstein JHP (1999) A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 32(5):1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301(5641):1866–1867

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amiri H, Karlberg O, Andersson SG (2003) Deep origin of plastid/parasite ATP/ADP translocases. J Mol Evol 56:137–150

    Article  PubMed  CAS  Google Scholar 

  • Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    Article  PubMed  CAS  Google Scholar 

  • Andersson JO, Sjogren AM, Davis LAM, Embley TM, Roger AJ (2003) Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 13(2):94–104

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Lill R (2004) The cell’s cookbook for iron–sulfur clusters: recipies for fool’s gold? Chem BioChem 5:1044–1049

    CAS  Google Scholar 

  • Baur E (1909) Das Wesen und die Erblichkeitsverhältnisse der varietates albimarginatae hort. von Pelargonium zonale. Z. induct. Abstamm.- u. Vererbungsl 1:330–351

    Article  Google Scholar 

  • Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18(7):358–365

    Article  Google Scholar 

  • Bereiter-Hahn J (1990) Behavior of mitochondria in the living cell. Int Rev Cytol 122:1–63

    Article  PubMed  CAS  Google Scholar 

  • Berry S (2003) Endosymbiosis and the design of eukaryotic electron transport. Biochim Biophys Acta-Bioenerg 1606(1–3):57–72

    Article  CAS  Google Scholar 

  • Biagini GA, Finlay BJ, Lloyd D (1997) Evolution of the hydrogenosome. FEMS Microbiol Lett 155(2):133–140

    Article  PubMed  CAS  Google Scholar 

  • Bleijlevens B, Buhrke T, van der Linden E, Friedrich B, Albracht SPJ (2004) The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of Ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem 279:46686–46691

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SWH, van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JHP (2004) The anaerobic chytridiomycete fungus Piromyces sp E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldon T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79

    Article  PubMed  CAS  Google Scholar 

  • Braun A (1873) Über Cytisus Adami I. Bot Z 31:636–664

    Google Scholar 

  • Buchner P (1953) Endosymbose der Tiere mit pflanzlichen Mikroorganismen. Birkhäuser basel/stuttgart (English translation: Buchner P 1965). Endosymbiosis of animals with plant microorganisms. Wiley, New York

    Google Scholar 

  • Bui ETN, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for the mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93:9651–9656

    Article  PubMed  CAS  Google Scholar 

  • Bullerwell CE, Lang BF (2005) Fungal evolution: the case of the vanishing mitochondrion. Curr Opin Microbiol 8:362–369

    Article  PubMed  CAS  Google Scholar 

  • Bullerwell CE, Gray MW (2004) The evolution of the mitochondrial genome: protist connections to animals, fungi and plants. Curr Opin Microbiol 7:528–534

    Article  PubMed  CAS  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716

    Article  PubMed  CAS  Google Scholar 

  • Chan KW, Slotboom DJ, Cox S, Embley TM, Fabre O, van der Giezen M, Harding M, Horner DS, Kunji ERS, Leon-Avila G, Tovar J (2005) A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr Biol 15:737–742

    Article  PubMed  CAS  Google Scholar 

  • Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    Article  PubMed  CAS  Google Scholar 

  • Clemens DL, Johnson PJ (2000) Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasit 106:307–313

    Article  CAS  Google Scholar 

  • Cotter D, Guda P, Fahy E, Subramaniam S (2004) MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res 32:D463–D467

    Article  PubMed  CAS  Google Scholar 

  • Darlington CD (1929) Variegation and albinism in Vicia faba. J Genet 21:161

    Article  Google Scholar 

  • De Bary A (1878) Ueber Symbiose. Tageblatt der 51. Versammlung deutscher Naturforscher und Aerzte in Cassel 1878. Druck von Baier und Lewalter in Cassel, pp 121–126

  • De Bary A (1879) Die Erscheinung der Symbiose. Vortrag gehalten auf der versammlung deutscher Naturforscher und Aerzte zu Cassel. Verlag Karl Trübner Strassburg

  • de Duve C (2005) Singulartities: Landmarks on the pathways of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222–235

    Article  PubMed  CAS  Google Scholar 

  • de Vries DD, de Wijs IJ, Wolff G, Ketelsen UP, Ropers HH, van Oost BA (1993) X-linked myoclonus epilepsy explained as a maternally inherited mitochondrial disorder. Hum Genet 91:51–54

    Article  PubMed  Google Scholar 

  • del Arco A, Satrustegui J (2005) New mitochondrial carriers: an overview. Cell Mol Life Sci 62:2204–2227

    Article  PubMed  CAS  Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154(Suppl):S164–S177

    Article  PubMed  Google Scholar 

  • Delwiche CF (2004) The genomic palimpsest: genomics in evolution and ecology. BioScience 54(11):991–1001

    Article  Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press, Oxford

    Google Scholar 

  • Dyall SD, Johnson PJ (2000) Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. Curr Opin Microbiol 3:404–411

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plümper E, Leuenberger D, Turck CW, Johnson PJ (2000) Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 20:2488–2497

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Lester DC, Schneider RE, Delgadillo-Correa MG, Plümper E, Martinez A, Koehler CM, Johnson PJ (2003) Trichomonas vaginalis HMP35, a putative pore-forming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem 278:30548–30561

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004a) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    Article  CAS  Google Scholar 

  • Dyall SD, Yan WH, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004b) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431:1103–1107

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Finlay BJ, Dyal PL, Hirt RP, Wilkinson M, Williams AG (1995) Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc R Soc Lond B 262:87–93

    Article  CAS  Google Scholar 

  • Embley TM, Horner DA, Hirt RP (1997) Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol Evol 12:437–441

    Article  Google Scholar 

  • Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–95

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Article  PubMed  CAS  Google Scholar 

  • Ernster L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91(3):227S–255S

    Article  PubMed  CAS  Google Scholar 

  • Erwin DH (1998) The end and the beginning: recoveries from mass extinctions. Trends Ecol Evol 13(9):344–349

    Article  Google Scholar 

  • Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W (2004) A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660

    Article  PubMed  CAS  Google Scholar 

  • Feagin JE (2000) Mitochondrial genome diversity in parasites. Int J Parasit 30:371–390

    Article  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25:319–324

    Article  PubMed  CAS  Google Scholar 

  • Gabaldon T (2005) Origin and evolution of the mitochondrial proteome. Applications for protein function prediction in the eukaryotes. Thesis Nijmegen 2005. ISBN:90-9019731–1

    Google Scholar 

  • Gabaldon T, Huynen MA (2003) Reconstruction of the proto-mitochondrial metabolism. Science 301(5633):609–609

    Article  PubMed  CAS  Google Scholar 

  • Gabaldon T, Huynen MA (2004) Shaping the mitochondrial proteome. Biochim Biophys Acta-Bioenerg 1659(2–3):212–220 (Special issue)

    Google Scholar 

  • Gabaldon T, Snel B, van Zimmeren F, Memrika W, Tabak H, Huynen MA (2006) Origin and evolution of the peroxisomal proteome. Biol Direct 1:8 (23 March 2006)

    Google Scholar 

  • Germot A, Philippe H, LeGuyader H (1996) Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci USA 93:14614–14617

    Article  PubMed  CAS  Google Scholar 

  • Gibor A, Izawa M (1963) The DNA content of the chloroplasts of Acetabularia. Proc Natl Acad Sci USA 50(6):1164–1169

    Article  PubMed  CAS  Google Scholar 

  • Gibor A, Granick S (1964) Plastids and mitochondria: inheritable systems. Science 145:890–897

    Article  PubMed  CAS  Google Scholar 

  • Giles RE, Blanc H, Cann HM Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77(11):6715–6719

    Article  PubMed  CAS  Google Scholar 

  • Goosen NK, Horemans AMC, Hillebrand SJW, Stumm CK, Vogels GD (1988) Cultivation of the sapropelic ciliate Plagiopyla nasuta Stein and isolation of the endosymbiont Methanobacterium formicicum. Arch Microbiol 150:165–170

    Article  Google Scholar 

  • Goosen NK, van der Drift C, Stumm CK, Vogels GD (1990a) End products of metabolism in the anaerobic ciliate Trimyema compressum. FEMS Microbiol Lett 69:171–175

    Article  CAS  Google Scholar 

  • Goosen NK, Wagener S, Stumm CK (1990b) A comparison of 2 strains of the anaerobic ciliate Trimyema compressum. Arch Microbiol 153:187–192

    Article  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283(5407):1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477–524

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hackstein JHP (1997) Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations. Anton Leeuw 72:63–76

    Article  CAS  Google Scholar 

  • Hackstein JHP (2005) Eukaryotic Fe-hydrogenases—old eukaryotic heritage or adaptive acquisitions? Biochem Soc Trans 33:47–50

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, Akhmanova A, Boxma B, Harhangi HR, Voncken FG (1999) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 7:441–447

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, Akhmanova A, Voncken F, van Hoek A, van Alen T, Boxma B, Moon-van der Staay SY, van der Staay G, Leunissen J, Huynen M, Rosenberg J, Veenhuis M (2001) Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zoology 104:290–302

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JHP, van Alen TA, Rosenberg J (2006) Methane production by terrestrial arthropods. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Soil biology, vol 6, manual for soil analysis. Springer, Berlin Heidelberg New York, pp 155–180

  • Haferkamp I, Hackstein JHP, Voncken FGJ, Schmit G, Tjaden J (2002) Functional integration of mitochondrial and hydrogenosomal ADP/ATP carriers in the Escherichia coli membrane reveals different biochemical characteristics for plants, mammals and anaerobic chytrids. Eur J Biochem 269(13):3172–3181

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Henikoff S (2004) Genomes and evolution. Deciphering the genomic palimpsest. Curr Opin Genet Dev 14:599–602

    Article  CAS  Google Scholar 

  • Henze K, Martin W (2003) Evolutionary biology: essence of mitochondria. Nature 426(6963):127–128

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand F (1908) Über Sämlinge von C. Adami. Ber D Deutsch Bot Ges 26A:590

    Google Scholar 

  • Horner DS, Hirt RP, Embley TM (1999) A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. Mol Biol Evol 16(9):1280–1291

    PubMed  CAS  Google Scholar 

  • Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1705

    PubMed  CAS  Google Scholar 

  • Horner DS, Embley TM (2001) Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. Mol Biol Evol 18:1970–1975

    PubMed  CAS  Google Scholar 

  • Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases—ancient enzymes in modern eukaryotes. Trends Biochem Sci 27:148–153

    Article  PubMed  CAS  Google Scholar 

  • Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2004) Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobacco. Proc Natl Acad Sci USA 101(26):9710–9715

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Grunheit N, Ahmadinejad N, Timmis JN, Martin W (2005) Mutational decay and age of chloroplast and mitochondrial genomes. Plant Physiol 138:1723–1733

    Article  PubMed  CAS  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196(4295):1161–1166

    Article  PubMed  CAS  Google Scholar 

  • Jacob F (2001) Complexity and tinkering. Ann NY Acad Sci 929:71–73

    Article  PubMed  CAS  Google Scholar 

  • Karlberg O, Canback B, Kurland CG, Andersson SG (2000) The dual origin of the yeast mitochondrial proteome. Yeast 17(3):170–187

    Article  PubMed  CAS  Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20(12):670–676

    Article  PubMed  Google Scholar 

  • Kerscher S, Drose S, Zwicker K, Zickermann V, Brandt U (2002) Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I. Biochim Biophys Acta 1555(1–3):83–91

    PubMed  CAS  Google Scholar 

  • Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284(5423):2129–2137

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG, Andersson SGE (2000) Origin and evolution of the mitochondrial proteome. Mol Biol Rev 64:786–820

    Article  CAS  Google Scholar 

  • Lang BF, Burger G, OKelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387(6632):493–497

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Brinkmann H, Koski L, Fujishima M, Goertz HD, Burger G (2005) On the origin of mitochondria and Rickettsia-related eukaryotic endosymbionts. Jpn J Protozool 38(2):171–183

    Google Scholar 

  • Leon-Avila G, Tovar J (2004) Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiology 150:1245–1250

    Article  PubMed  CAS  Google Scholar 

  • Leroch M (2006) Molekulare, biochemische und physiologische Eigenschaften von Transportproteinen aus der MCF (mitochondrial carrier family) in Pflanzen und Protisten. PhD Thesis, Technische Universität Kaiserslautern, Germany

  • Leroch M, Kirchberger S, Haferkamp I, Wahl M, Neuhaus HE, Tjaden J (2005) Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum. J Biol Chem 280:17992–18000

    Article  PubMed  CAS  Google Scholar 

  • Lill R, Mühlenhoff U (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30:133–141

    Article  PubMed  CAS  Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    PubMed  CAS  Google Scholar 

  • Lopez-Garcia P, Moreira D (1999) Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24(3):88–93

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia P, Moreira D (2006) Selective forces for the origin of the eukaryotic nucleus. Bioessays 28(5):525–533

    Article  PubMed  CAS  Google Scholar 

  • Mai ZM, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19(3):2198–2205

    PubMed  CAS  Google Scholar 

  • Margulis L (1993) Symbiosis in cell evolution. 2nd edn. WH Freeman and Company, New York

    Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45

    Article  PubMed  CAS  Google Scholar 

  • Martin W (2005) The missing link between hydrogenosomes and mitochondria. Trends Mirobiol 13:457–459

    Article  CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539

    Article  PubMed  CAS  Google Scholar 

  • Mendel G (1865) Versuche über Pflanzenhybriden. Verhandl. Naturf. Verein Brünn 4:3–47 (1986) (English translation by W. Bateson in Peters, JA Classic papers in genetics. Prentice-Hall Inc., Englewood Cliffs, NJ, USA, 1959; pp 1–20)

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralblatt 25(18):593–604 (Annotated English translation by William Martin and Klaus V. Kowallik in Eur J Phycol 34(3):287–295, 1999)

  • Moreira D, Lopez-Garcia P (1998) Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47(5):517–530

    Article  PubMed  CAS  Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889

    PubMed  Google Scholar 

  • Müller M (1998) Enzymes and compartmentalization of core energy metabolism of anaerobic protists—a special case in eukaryotic evolution? In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. The Systematics Association, special volume series 56. Kluwer Academic Publishers, Dordrecht, Boston London, pp 109–132

    Google Scholar 

  • Nass MMK, Nass S (1963a) Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J Cell Biol 19:593–611

    Article  CAS  Google Scholar 

  • Nass S, Nass MMK (1963b) Intramitochondrial fibres with DNA characteristics. II. Enzymatic and other treatments. J Cell Biol 19:613–629

    Article  CAS  Google Scholar 

  • Nass MMK, Nass S, Afzelius BA (1965) The general occurrence of mitochondrial DNA. Exp Cell Res 37:516–539

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F (1994) Mitochondrial carrier proteins. FEBS Lett 346:48–54

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39(1):4–11

    Article  CAS  Google Scholar 

  • Portier P (1918) Les symbiotes. Masson, Paris

    Google Scholar 

  • Regoes A, Zourmpanou D, Leon-Avila G, van der Giezen M, Tovar J, Hehl AB (2005) Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem 280:30557–30563

    Article  PubMed  CAS  Google Scholar 

  • Reichert AS, Neupert W (2004) Mitochondriomics or what makes us breathe. Trends Genet 20:555–562

    Article  PubMed  CAS  Google Scholar 

  • Renner O (1922) Eiplasma und Pollenschlauchplasma als Vererbungsträger bei den Oenotheren. Z Induct Abstamm-U Vererbungs l 27:235–237

    Google Scholar 

  • Renner O (1924) Die Scheckung der Oenotherenbastarde. Biol Zentralb 44:309

    Google Scholar 

  • Renner O (1934) Die pflanzlichen Plastiden als selbständige Elemente der genetischen Konstitution. Ber Sächs Akad Wiss Math-Phys Kl 86:241–266

    Google Scholar 

  • Renner O (1936a) Zur Entwicklungsgeschichte randpanaschierter Formern von Sambucus, Veronica, Pelargonium, Spirea, Chlorophytum. Flora 130:154

    Google Scholar 

  • Renner O (1936b) Zur Kenntnis der nichtmendelnden Buntheit der Laublätter. Flora 130:218

    Google Scholar 

  • Ribero S, Golding GB (1998) The mosaic nature of the eukaryotic nucleus. Mol Biol Evol 15:779–788

    Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155

    Article  PubMed  CAS  Google Scholar 

  • Rivera MC, Jain R, Moore JE, Lake JA (1998) Genomic evidence for two functionally distinct gene classes. PNAS 95:6239–6244

    Article  PubMed  CAS  Google Scholar 

  • Rivière L, van Weelden SWH, Glass P, Vegh P, Coustou V, Biran M, van Hellemond JJ, Bringaud F, Tielens AGM, Boshart M (2004) Acetyl: succinate CoA-transferase in procyclic Trypanosoma brucei—gene identification and role in carbohydrate metabolism. J Biol Chem 279:45337–45346

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15(4):1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Roger AJ (1999) Reconstructing early events in eukaryotic evolution. Am Nat 154:S146–S163

    Article  PubMed  Google Scholar 

  • Rotte C, Henze K, Müller M, Martin W (2000) Origins of hydrogenosomes and mitochondria—commentary. Curr Opin Microbiol 3:481–486

    Article  PubMed  CAS  Google Scholar 

  • Sagan L (1967) The origin of mitosing cells. J Theoret Biol 14:225–274

    Article  CAS  Google Scholar 

  • Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493

    Article  PubMed  CAS  Google Scholar 

  • Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100:13207–13212

    Article  PubMed  CAS  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  PubMed  CAS  Google Scholar 

  • Smeitink JA, Zeviani M, Turnbull DM, Jacobs HT (2006) Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 3(1):9–13

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100(15):8828–8833

    Article  PubMed  CAS  Google Scholar 

  • Stubbe W (1959) Genetische Analyse des Zusammenwirkens von Genom und Plastom bei Oenothera. Z Vererbungsl 90:288–298

    Article  Google Scholar 

  • Tielens AG, Rotte C, van Hellemond JJ, Martin W (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27:564–572

    Article  PubMed  CAS  Google Scholar 

  • Tjaden J, Haferkamp I, Boxma B, Tielens AGM, Huynen M, Hackstein JHP (2004) A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol Microbiol 51:1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Tilney-Basset RAE (1963) Genetics and plastid physiology in Pelargonium. Heredity 18:265

    Article  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5(2):123–135

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron sulfur protein maturation. Nature 426:172–176

    Article  PubMed  CAS  Google Scholar 

  • Vanacova S, Liston DR, Tachezy J, Johnson PJ (2003) Molecular biology of the amitochondriate parasites, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. Int J Parasitol 33:235–255

    Article  PubMed  CAS  Google Scholar 

  • van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95

    Article  Google Scholar 

  • van Bruggen JJA, Zwart KB, van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 139:1–7

    Article  Google Scholar 

  • van Bruggen JJA, Zwart KB, Herman JGF, van Hove EM, Assema RM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbiosus sp.nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374

    Article  Google Scholar 

  • van der Giezen M, Sjollema KA, Artz RRE, Alkema W, Prins RA (1997) Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett 408:147–150

    Article  PubMed  Google Scholar 

  • van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, Xue GP, Embley TM, Kunji ERS (2002) Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. Embo J 21:572–579

    Article  PubMed  Google Scholar 

  • van der Giezen M, Birdsey GM, Horner DS, Lucocq J, Dyal PL, Benchimol M, Danpure CJ, Embley TM (2003) Fungal hydrogenosomes contain mitochondrial heat-shock proteins. Mol Biol Evol 20:1051–1061

    Article  PubMed  Google Scholar 

  • van der Giezen M, Cox S, Tovar J (2004) The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol 4; Art. No. 7 February 20 2004

  • van der Giezen M, Tovar J, Clark CG (2005) Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244:175–225

    Article  PubMed  Google Scholar 

  • van der Giezen M, Tovar J (2005) Degenerate mitochondria. EMBO Rep 6:525–530

    Article  PubMed  CAS  Google Scholar 

  • van der Giezen M, Leon-Avila G, Tovar J (2005) Characterization of chaperonin 10 (Cpn10) from the intestinal human pathogen Entamoeba histolytica. Microbiol-SGM 151:3107–3115

    Article  CAS  Google Scholar 

  • van Hellemond JJ, Opperdoes FR, Tielens AGM (1998) Trypanosomatidae produce acetate via a mitochondrial acetate: succinate CoA transferase. Proc Natl Acad Sci USA 95:3036–3041

    Article  PubMed  Google Scholar 

  • van Hoek AHAM, van Alen TA, Sprakel VSI, Hackstein JHP, Vogels GD (1998) Evolution of anaerobic ciliates from the gastrointestinal tract: phylogenetic analysis of the ribosomal repeat from Nyctotherus ovalis and its relatives. Mol Biol Evol 15:1195–1206

    PubMed  Google Scholar 

  • van Hoek AHAM, Sprakel VSI, van Alen TA, Theuvenet APR, Vogels GD, Hackstein JHP (1999) Voltage dependent reversal of anodic galvanotaxis in Nyctotherus ovalis. J Euk Microbiol 46:427–433

    Article  PubMed  Google Scholar 

  • van Hoek AHAM, Akhmanova AS, Huynen M, Hackstein JHP (2000a) A mitochondrial ancestry of the hydrogenosomes of Nyctotherus ovalis. Mol Biol Evol 17:202–206

    Google Scholar 

  • van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP (2000b) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258

    Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  • Vivares CP, Gouy M, Thomaratb F, Météniera G (2002) Functional and evolutionary analysis of a eukaryotic parasitic genome. Curr Opin Microbiol 5:499–505

    Article  PubMed  CAS  Google Scholar 

  • Voncken FGJ (2001) Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Thesis Nijmegen. ISBN 90-9014868-x. Ponsen and Looien BV, Wageningen, The Netherlands

  • Voncken FGJ, Boxma B, Tjaden J, Akhmanova AS, Huynen M, Verbeek F, Tielens AGM, Haferkamp I, Neuhaus HE, Vogels G, Veenhuis M, Hackstein JHP (2002a) Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol 44:1441–1454

    Article  CAS  Google Scholar 

  • Voncken FGJ, Boxma B, van Hoek AHAM, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JHP (2002b) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp L2. Gene 284:103–112

    Article  CAS  Google Scholar 

  • von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412(6845):433–436

    Article  Google Scholar 

  • Wallace DC (1989) Mitochondrial DNA mutations and neuromuscular disease. Trends Genet 5(1):1–13

    Google Scholar 

  • Wallin IE (1925) On the nature of mitochondria. IX. Demonstration of the bacterial nature of mitochondria. Am J Anat 36:131–146

    Article  Google Scholar 

  • Wallin IE (1927) Symbionticism and the origin of species. Williams and Wilkins, Baltimore

    Google Scholar 

  • Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    Article  PubMed  CAS  Google Scholar 

  • Winkler HH, Neuhaus HE (1999) Non-mitochondrial ATP transport. Trends Biochem Sci 24:64–68

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283:1493–1497

    Article  PubMed  CAS  Google Scholar 

  • Yarlett N, Hann AC, Lloyd D, Williams A (1981) Hydrogenosomes in the rumen protozoan Dasytricha ruminantium Schuberg. Biochem J 200(2):365–372

    PubMed  CAS  Google Scholar 

  • Yarlett N, Coleman GS, Williams AG, Lloyd D (1984) Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett 21(1):15–19

    Article  CAS  Google Scholar 

  • Yarlett N (2004) Anaerobic protists and hidden mitochondria. Microbiol-SGM 150:127–129

    Article  CAS  Google Scholar 

  • Yarlett N, Hackstein JHP (2005) Hydrogenosomes: one organelle, multiple origins. Bioscience 55:657–668

    Article  Google Scholar 

  • Zillig W, Klenk HP, Palm P, Leffers H, Pühler G, Gropp F, Garret RA (1989) Did eukaryotes originate by a fusion event? Endocyt Cell Res 6:1–25

    Google Scholar 

  • Zwart KB, Goosen NK, van Schijndel MW, Broers CAM, Stumm CK, Vogels GD (1988) Cytochemical-localization of hydrogenase activity in the anaerobic protozoa Trichomonas vaginalis, Plagiopyla nasuta and Trimyema compressum. J Gen Microbiol 134:2165–2170

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the permission to use genome sequence data of Trichomonas provided by The Institute for Genomic Research (TIGR) with funding of the NIH/NIAID. We thank Uwe Maier, Martin Schlegel and Louis Tielens for critical reading, and Alan Schwartz for improving the phrasing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes H. P. Hackstein.

Additional information

Communicated by R. Bock

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackstein, J.H.P., Tjaden, J. & Huynen, M. Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering!. Curr Genet 50, 225–245 (2006). https://doi.org/10.1007/s00294-006-0088-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0088-8

Keywords

Navigation