Skip to main content
Log in

Mosaic (MSC) cucumbers regenerated from independent cell cultures possess different mitochondrial rearrangements

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Passage of the highly inbred cucumber (Cucumis sativus L.) line B through cell culture produces progenies with paternally transmitted, mosaic (MSC) phenotypes. Because the mitochondrial genome of cucumber shows paternal transmission, we evaluated for structural polymorphisms by hybridizing cosmids spanning the entire mitochondrial genome of Arabidopsis thaliana L. to DNA-gel blots of four independently generated MSC and four wild-type cucumbers. Polymorphisms were identified by cosmids carrying rrn18, nad5-exon2, rpl5, and the previously described JLV5 deletion. Polymorphisms revealed by rrn18 and nad5-exon2 were due to one rearrangement bringing together these two coding regions. The polymorphism revealed by rpl5 was unique to MSC16 and was due to rearrangement(s) placing the rpl5 region next to the forward junction of the JLV5 deletion. The rearrangement near rpl5 existed as a sublimon in wild-type inbred B, but was not detected in the cultivar Calypso. Although RNA-gel blots revealed reduced transcription of rpl5 in MSC16 relative to wild-type cucumber, Western analyses revealed no differences for the RPL5 protein and the genetic basis of the MSC16 phenotype remains enigmatic. We evaluated 17 MSC and wild-type lines regenerated from independent cell-culture experiments for these structural polymorphisms and identified eight different patterns, indicating that the passage of cucumber through cell culture may be a unique mechanism to induce or select for novel rearrangements affecting mitochondrial gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abreu I, Santos A, Salema R (1982) Atypical mitochondria during microsporogenesis in Cucumis sativus L. J Submicrosc Cytol 4:369–375

    Google Scholar 

  • Adams K, Qiu Y, Stoutemyer M, Palmer J (2002) Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci USA 99:9905–9912

    Article  CAS  PubMed  Google Scholar 

  • Arrieta-Montiel M, Lyznik A, Woloszynska M, Janska H, Tohme J, Mackenzie S (2001) Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in common bean. Genetics 158:851–864

    CAS  PubMed  Google Scholar 

  • Burza W, Malepszy S (1995a) Direct plant regeneration from leaf explants in cucumber (Cucumis sativus L.) is free of stable genetic variation. Plant Breed 114:341–345

    Google Scholar 

  • Burza W, Malepszy S (1995b) In vitro culture of Cucumis sativus L. XVII. Plants from protoplasts through direct somatic embryogenesis. Plant Cell Tissue Organ Cult 41:259–266

    Google Scholar 

  • Coe EH Jr (1983) Maternally inherited abnormal plants in maize. Maydica 28:151–167

    Google Scholar 

  • Feiler HS, Newton KJ (1987) Altered mitochondrial gene expression in the nonchromosomal stripe 2 mutant of maize. EMBO J 6:1535–1539

    CAS  Google Scholar 

  • Giegé P, Hoffmann M, Binder S, Brennicke A (2000) RNA degradation buffers asymmetries of transcription in Arabidopsis mitochondria. EMBO Rep 1:164–170

    Article  PubMed  Google Scholar 

  • Goff S le, Lachaume P, Touraille S, Alziari S (2002) The nuclear genome of a Drosophila mutant strain increases the frequency of rearranged mitochondrial DNA molecules. Curr Genet 40:345–354

    Article  PubMed  Google Scholar 

  • Gu J, Dempsey S, Newton KJ (1994) Rescue of a maize mitochondrial cytochrome oxidase mutant by tissue culture. Plant J 6:787–794

    CAS  PubMed  Google Scholar 

  • Hartmann C, De Buyser J, Henry Y, Morere-LePaven MC, Dyer TA, Rode A (1992) Nuclear genes control changes in the organization of the mitochondrial genome in tissue cultures derived from immature embryos of wheat. Curr Genet 21:515–520

    CAS  PubMed  Google Scholar 

  • Havey MJ (1997) Paternal transmission of the cucumber mitochondrial genome. J Hered 88:232–235

    Google Scholar 

  • Havey MJ, McCreight J, Rhodes B, Taurick G (1998) Differential transmission of the Cucumis organellar genomes. Theor Appl Genet 97:122–128

    Article  CAS  Google Scholar 

  • He S, Lyznik A, Mackenzie SA (1995) Pollen fertility restoration by nuclear gene Fr in CMS bean, nuclear-directed alternation of a mitochondrial populations. Genetics 97:955–962

    Google Scholar 

  • Hoffmann M, Dombrowski S, Guha C, Binder S (1999) Cotranscription of the rpl5-rps14-cob gene cluster in pea mitochondria. Mol Gen Genet 261:537–545

    Article  CAS  PubMed  Google Scholar 

  • Jacobs HT (2001) Making mitochondrial mutants. Trends Genet 17:653–660

    Article  CAS  PubMed  Google Scholar 

  • Janska H, Mackenzie SA (1993) Unusual mitochondrial genome organization in cytoplasmic male sterile common bean and the nature of cytoplasmic reversion to fertility. Genetics 135:869–879

    CAS  PubMed  Google Scholar 

  • Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180

    CAS  PubMed  Google Scholar 

  • Kanazawa A, Tsutsumi N, Hirai A (1994) Reversible changes in the composition of the population of mtDNAs during dedifferential and regeneration in tobacco. Genetics 138:865–870

    CAS  PubMed  Google Scholar 

  • Karpova OV, Kuzmin EV, Elthon TE, Newton KJ (2002) Differential expression of alternative oxidase genes in maize mitochondrial mutants. Plant Cell 14:3271–3284

    Google Scholar 

  • Kaul M (1988) Male sterility in higher plants. Springer, Berlin Heidelberg New York

  • Klein M, Eckertossenkopp U, Schmiedeberg I, Brandt P, Unseld M, Brennicke A, Schuster W (1994) Physical mapping of the mitochondrial genome of Arabidopsis thaliana by cosmid and YAC clones. Plant J 6:447–455

    Article  CAS  PubMed  Google Scholar 

  • Ladyzynski M, Burza W, Malepszy S (2002) Relationship between somaclonal variation and type of culture in cucumber. Euphytica 125:349–356

    Article  CAS  Google Scholar 

  • Lauer M, Knudsen C, Newton KJ, Gabay-Laughnan S, Laughnan JR (1990) A partially deleted mitochondrial cytochrome oxidase gene in the NCS6 abnormal growth mutant of maize. New Biol 2:179–186

    CAS  PubMed  Google Scholar 

  • Lilly JW, Havey MJ (2001) Short repetitive motifs contributed significantly to the huge mitochondrial genome of cucumber. Genetics 159:317–328

    CAS  PubMed  Google Scholar 

  • Lilly JW, Bartoszewski G, Malepszy S, Havey MJ (2001) A major deletion in the mitochondrial genome sorts with MSC phenotype of cucumber. Curr Genet 40:144–151

    Article  CAS  PubMed  Google Scholar 

  • Maier RM, Zeltz P, Kossel H, Bonnard G, Gualberto JM, Grienenberger JM (1996) RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol 32:343–365

    CAS  PubMed  Google Scholar 

  • Malepszy S, Burza W, Smiech M (1996) Characterization of a cucumber (Cucumis sativus L.) somaclonal variant with paternal inheritance. J Appl Genet 37:65–78

    Google Scholar 

  • Martinez-Zapater JM, Gil P, Capel J, Somerville C (1992) Mutations at the Arabidopsis chm locus promote rearrangements of the mitochondrial genome. Plant Cell 4:889–899

    Article  CAS  PubMed  Google Scholar 

  • McCabe TC, Finnegan PM, Millar AH, Day DA, Whelan J (1998) Differential expression of alternative oxidase genes in soybean cotyledons during post-germinative development. Plant Physiol 118:675–682

    Article  CAS  PubMed  Google Scholar 

  • Moneger F, Smart CJ, Leaver CJ (1994) Nuclear restoration of cytoplasmic male sterility in sunflower is associated with the tissue-specific regulation of a novel mitochondrial gene. EMBO J 13:8–17

    PubMed  Google Scholar 

  • Neefs JM, Van de Peer Y, De Rijk P, Chapelle S, De Wachter R (1993) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 21:3025–3049

    CAS  PubMed  Google Scholar 

  • Newton KJ (1995) Aberrant growth phenotypes associated with mitochondrial genome rearrangements in higher plants. In: Levings CS, Vasil IK (eds) The molecular biology of plant mitochondria. Kluwer, Amsterdam, pp 585–596

  • Newton KJ, Coe EH Jr (1986) Mitochondrial DNA changes in abnormal growth mutants of maize. Proc Natl Acad Sci USA 83:7363–7366

    CAS  Google Scholar 

  • Nizetic D, Drmanac R, Lehrach H (1991) An improved bacterial colony lysis procedure enables direct DNA hybridization using short (10-bases, 11-bases) oligonucleotides to cosmids. Nucleic Acid Res 19:182

    CAS  PubMed  Google Scholar 

  • Plader W, Malepszy S, Burza W, Rusinowski Z (1998) The relationship between the regeneration system and genetic variability in the cucumber (Cucumis sativus L.). Euphytica 103:9–15

    Article  Google Scholar 

  • Sakamoto W, Kondo H, Murata M, Motoyoshi F (1996) Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. Plant Cell 8:1377–1390

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fitsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sarria R, Lyznik A, Vallejos, CE, Mackenzie SA (1998) A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated. Plant Cell 10:1217–1228

    Google Scholar 

  • Souza AP de, Jubier MF, Delcher E, Lancelin D, Lejeune B (1991) A trans-splicing model for the expression of the tripartite nad5 gene in wheat and maize mitochondria. Plant Cell 3:1363–1378

    Google Scholar 

  • Stern DB, Newton KJ (1985) Mitochondrial gene expression in Cucurbitaceae: conserved and variable features. Curr Genet 9:395–405

    CAS  PubMed  Google Scholar 

  • Sutton CA, Conklin PL, Pruitt KD, Calfee AJ, Cobb AG, Hanson MR (1993) Editing of rps3/rpl16 transcripts creates a premature truncation of the rpl16 open reading frame. Curr Genet 23:472–476

    CAS  PubMed  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    CAS  PubMed  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803

    CAS  PubMed  Google Scholar 

  • Woloszynska M, Kieleczawa J, Ornatowska M, Wozniak M, Janska H (2001) The origin and maintenance of the small repeat in the bean mitochondrial genome. Mol Gen Genomics 265:865–872

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Joseph Walker (University of Wisconsin, USA) for help with protein analyses, Tom Elthon (University of Nebraska, USA) for providing the anti-PORIN mouse monoclonal antibody, Axel Brennicke (Universität Ulm, Germany) for the Arabidopsis mitochondrial cosmids, and Hanna Janska (Uniwersytet Wrocławski, Poland) for critical reading of this manuscript. G.B. was partially supported by the NATO Advanced Fellowships Programme for post-doctoral research at the University of Wisconsin. Product names are necessary to report factually on available data. However, the United States Department of Agriculture (USDA) neither guarantees nor warrants the standard of the product; and the use of a name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Havey.

Additional information

Communicated by A. Brennicke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartoszewski, G., Malepszy, S. & Havey, M.J. Mosaic (MSC) cucumbers regenerated from independent cell cultures possess different mitochondrial rearrangements. Curr Genet 45, 45–53 (2004). https://doi.org/10.1007/s00294-003-0456-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0456-6

Keywords

Navigation