Skip to main content
Log in

Heterogeneity of intron presence or absence in rDNA genes of the lichen species Physcia aipolia and P. stellaris

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Intron origin and evolution are of high interest, yet the rates of insertion and loss are unclear. To investigate their spread, we studied ribosomal (r)DNA introns from the closely related lichens Physcia aipolia and P. stellaris. Both taxa are replete with rDNA spliceosomal introns and autocatalytic group I introns, many of which show presence/absence polymorphism when screened with the PCR approach. This initially suggested that Physcia could be a model for studying intron retention and loss. However, during the course of a population-level analysis, we discovered widespread intron presence/absence heterogeneity within lichen thalli. To address this result, we sequenced multiple clones encoding nuclear rDNA and the single-copy elongation factor-1α (EF-1α) from individual thalli. These data showed extensive rDNA heterogeneity within individuals, rather than the presence of multiple fungi within a thallus. Our results suggest that considerable care must be taken when interpreting intron presence/absence in lichen rDNA, an observation that has general implications for the study of rDNA intron evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, New York, pp 49–61

    Google Scholar 

  • Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on non-homologous chromosomes in man and apes. Proc Natl Acad Sci USA 77:7323–7327

    CAS  PubMed  Google Scholar 

  • Arnheim N, Treco D, Taylor B, Eicher EM (1982) Distribution of ribosomal gene length variants among mouse chromosomes. Proc Natl Acad Sci USA 79:4677–4680

    CAS  PubMed  Google Scholar 

  • Baldauf SL (1999) A search for the origins of animals and fungi: comparing and combining molecular data. Am Nat 154:S178–S188

    Article  PubMed  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CD, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82:247–277

    Google Scholar 

  • Bhattacharya D, Surek B, Ruesing M, Damberger S, Melkonian M (1994) Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae). Proc Natl Acad Sci USA 91:9916–9920

    CAS  PubMed  Google Scholar 

  • Bhattacharya D, Friedl T, Damberger S (1996) Nuclear-encoded rDNA group I introns: origin and phylogenetic relationships of insertion site lineages in the green algae. Mol Biol Evol 13:978–989

    CAS  PubMed  Google Scholar 

  • Bhattacharya D, Lutzoni F, Reeb V, Simon D, Nason J, Fernandez F (2000) Widespread occurrence of spliceosomal introns in the rDNA genes of ascomycetes. Mol Biol Evol 17:1971–1984

    CAS  PubMed  Google Scholar 

  • Bhattacharya D, Cannone JJ, Gutell RR (2001) Group I intron lateral transfer between red and brown algal ribosomal RNA. Curr Genet 40:82–90

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Friedl T, Helms G (2002) Vertical evolution and intragenic spread of lichen-fungal group I introns. J Mol Evol 55:74–84

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Simon D, Huang J, Cannone JJ, Gutell RR (2003) The exon context and distribution of Euascomycetes rRNA spliceosomal introns. BMC Evol Biol 3:7

    Article  PubMed  Google Scholar 

  • Bracho MA, Moya A, Barrio E (1998) Contribution of Taq polymerase-induced errors to the estimation of RNA virus diversity. J Gen Virol 79:2921–2928

    CAS  PubMed  Google Scholar 

  • Bruno WJ, Halpern AL (1999)Topological bias and inconsistency of maximum likelihood using wrong models. Mol Biol Evol 16:564–566

    CAS  PubMed  Google Scholar 

  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform 3:2

    Article  Google Scholar 

  • Cassidy JR, Moore D, Lu BC, Pukkila PJ (1984) Unusual organization and lack of recombination in the ribosomal-RNA genes of Coprinus cinereus. Curr Genet 8:607–613

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1985) Selfish DNA and the origin of introns. Nature 315:283–284

    Article  CAS  PubMed  Google Scholar 

  • Cech TR (1985) Self-splicing RNA: implications for evolution. Int Rev Cytol 93:3–22

    CAS  PubMed  Google Scholar 

  • Cech T (1986) The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44:207–210

    Article  CAS  PubMed  Google Scholar 

  • Cloix C, Tutois S, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S (2000) Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res 10:679–690

    Article  CAS  PubMed  Google Scholar 

  • Coen E, Strachan T, Dover GA (1982) Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J Mol Biol 158:17–35

    Article  CAS  PubMed  Google Scholar 

  • Coghlan A, Wolfe KH (2004) Origins of recently gained introns in Caenorhabditis. Proc Natl Acad Sci USA 101:11362–11367

    Article  CAS  PubMed  Google Scholar 

  • Copenhaver GP, Pikaard CS (1996) Two-dimensional RFLP analyses reveal megabase-sized clusters of rRNA gene variants in Arabidopsis thaliana suggesting local spreading of variants as the mode for gene homogenization during concerted evolution. Plant J 9:273–282

    Article  CAS  PubMed  Google Scholar 

  • Cubero OF, Bridge PD, Crespo A (2000) Terminal-sequence conservation identifies spliceosomal introns in ascomycete 18S RNA genes. Mol Biol Evol 17:751–756

    CAS  PubMed  Google Scholar 

  • Cubero OF, Crespo A, Esslinger TL, HT Lumbsch (2004) Molecular phylogeny of the genus Physconia (Ascomycota, Lecanorales) inferred from a Bayesian analysis of nuclear ITS rDNA sequences. Mycol Res 108:498–505

    Article  CAS  PubMed  Google Scholar 

  • DePriest PT (1993) Small subunit rDNA variation in a population of lichen fungi due to optional group-I introns. Gene 134:67–74

    Article  CAS  PubMed  Google Scholar 

  • DePriest PT, Been MD (1992) Numerous group I introns with variable distributions in the ribosomal DNA of a lichen fungus. J Mol Biol 228:315–321

    Article  CAS  PubMed  Google Scholar 

  • Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Article  CAS  PubMed  Google Scholar 

  • Elder JF, Turner BJ (1995) Concerted evolution of repetititive DNA sequences in eukaryotes. Q Rev Biol 70:297–320

    Article  CAS  PubMed  Google Scholar 

  • Fahselt D (1996) Individuals, populations and population ecology. In: Nash TH (ed) Lichen biology. Cambridge University, Cambridge, pp 181–198

    Google Scholar 

  • Fedorov A, Cao X, Saxonov S, Souza SJ de, Roy SW, Gilbert W (2001) Intron distribution difference for 276 ancient and 131 modern genes suggests the existence of ancient introns. Proc Natl Acad Sci USA 98:13177–13182

    Article  CAS  PubMed  Google Scholar 

  • Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–19120

    Google Scholar 

  • Friedl T, Besendahl A, Pfeiffer P, Bhattacharya D (2000) The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. Mol Phylogenet Evol 14:342–352

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1987) The exon theory of genes. Cold Spring Harb Symp Quant Biol 52:901–905

    CAS  PubMed  Google Scholar 

  • Gilbert D (2001) SeqApp: a Macintosh biosequence editor, analyzer, and network handyman. ftp://iubio.bio.indiana.edu/iubionew///molbio/dna/display/SeqApp/

  • Gilbert W, Glynias M (1993) On the ancient nature of introns. Gene 135:137–144

    Article  CAS  PubMed  Google Scholar 

  • Graur D, Li W-H (2000) Fundamentals of molecular evolution, 2nd edn. Sinauer, Sunderland, Mass., pp 99–164

    Google Scholar 

  • Grube M, Gutmann B, Arup U, Rios A de los, Mattsson JE, Wedin M (1999) An exceptional group-I intron-like insertion in the SSU rDNA of lichen mycobionts. Curr Genet 35:536–541

    Article  CAS  PubMed  Google Scholar 

  • Haugen P, Simon D, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:111–119

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (1982) Secondary fungi in lichen symbioses: parasites, saprophytes, and parasymbionts. J Hattori Bot Lab 52:357–366

    Google Scholar 

  • Helgason T, Watson IJ, Young J, Peter W (2003) Phylogeny of the Glomerales and Diversisporales (fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol Lett 229:127–132

    Article  CAS  PubMed  Google Scholar 

  • Helms G, Friedl T, Rambold G (2003) Phylogenetic relationships of the Physciaceae inferrered from rDNA sequence data and selected phenotypic characters. Mycologia 95:1078–1099

    CAS  Google Scholar 

  • Hey J, Wakeley J (1997) A coalescent estimator of the population recombination rate. Genetics 145:833–846

    CAS  PubMed  Google Scholar 

  • Hibbett DS (1996) Phylogenetic evidence for horizontal transmission of group I introns in the nuclear ribosomal DNA of mushroom-forming fungi. Mol Biol Evol 13:903–917

    CAS  PubMed  Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Moritz C, Porter CA Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251:308–310

    CAS  PubMed  Google Scholar 

  • Holst-Jensen A, Vaage M, Schumacher T, Johansen S (1999) Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi. Mol Biol Evol 16:114–2621

    CAS  PubMed  Google Scholar 

  • Honegger R (1996) Mycobionts. In: Nash TH (ed) Lichen biology. Cambridge University, Cambridge, pp 24–36

    Google Scholar 

  • Ito Y, Hirano T (1999) A group I intron in the 18S ribosomal DNA from the parasitic fungus Isaria japonica. J Mol Evol 48:337–340

    CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Kobayashi N, Tamura K, Aotsuka T (1999) PCR error and molecular population genetics. Biochem Genet 37:317–321

    Article  CAS  PubMed  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Article  CAS  PubMed  Google Scholar 

  • Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62:587–622

    Article  CAS  PubMed  Google Scholar 

  • Lickey EB, Hughes KW, Peterson RH (2003) Variablility and phylogenetic incongruence of an SSU nrDNA group I intron in Artomyces, Auriscalpium, and Lentinellus (Auriscalpiaceae: Homobasdiomycetes). Mol Biol Evol 20:1909–1916

    Article  CAS  PubMed  Google Scholar 

  • Llopart A, Comeron JM, Brunet FG, Lachaise D, Long M (2002) Intron presence-absence polymorphism in Drosophila driven by positive Darwinian selection. Proc Natl Acad Sci USA 11:8121–8126

    Article  Google Scholar 

  • Logsdon JM Jr (1998) The recent origins of spliceosomal introns revisited. Curr Opin Genet Dev 8:637–648

    Article  CAS  PubMed  Google Scholar 

  • Lohtander K, Kallersjo M, Moberg R, Tehler A (2000) The family Physciaceae in Fennoscandia: phylogeny inferred from ITS sequences. Mycologia 92:728–735

    CAS  Google Scholar 

  • Long M, Rosenberg C, Gilbert W (1995) Intron phase correlations and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci USA 92:12495–12499

    CAS  PubMed  Google Scholar 

  • Lynch M, Richardson AO (2002) The evolution of spliceosomal introns. Curr Opin Genet Dev 12:701–710

    Article  CAS  PubMed  Google Scholar 

  • Martin MP, Coucheron DH, Johansen S (2003) Structural features and evolutionary considerations of group IB introns in SSU rDNA of the lichen fungus Teloschistes. Fungal Genet Biol 40:252–260

    Article  CAS  PubMed  Google Scholar 

  • Michel F, Westof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610

    Article  CAS  PubMed  Google Scholar 

  • Moore MJ, Query CC, Sharp PA (1993) Splicing of precursors to mRNA by the spliceosome. In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 303–358

    Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell K, Lutzoni F, Ward TJ, Benny GL (2001) Evolutionary relationships among mucoralean fungi (Zygomycota): evidence for family polyphyly on a large scale. Mycologia 93:286–296

    CAS  Google Scholar 

  • Palmer JD, Logsdon JM Jr (1991) The recent origins of introns. Curr Opin Genet Dev 1:470–477

    CAS  PubMed  Google Scholar 

  • Piontkivska H (2004) Efficiencies of maximum likelihood methods of phylogenetic inferences when different substitution models are used. Mol Phylogenet Evol 31:865–873

    Article  CAS  PubMed  Google Scholar 

  • Polanco C, Gonzalez AI, Fuente A de la, Dover GA (1998) Multigene family of ribosomal DNA in Drosophila melanogaster reveals contrasting patterns of homogenization for IGS and ITS spacer regions: a possible mechanism to resolve this paradox. Genetics 149:243–256

    CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rogers SO, Yan ZH, Shinohara M, LoBuglio KF, Wang CJK (1993) Messenger RNA intron in the nuclear 18S ribosomal RNA gene of deuteromycetes. Curr Genet 23:338–334

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messegyer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Ruby SW, Abelson J (1991) Pre-mRNA splicing in yeast. Trends Genet 7:79–85

    CAS  PubMed  Google Scholar 

  • Russell PJ, Wagner S, Rodland KD, Feinbaum RL, Russell JP, Bretharte MS, Free SJ, Metzenberg RL (1984) Organization of the ribosomal ribonucleic acid genes in various wild-type strains and wild-collected strains of Neurospora. Mol Gen Genet 196:275–282

    Article  CAS  PubMed  Google Scholar 

  • Schlotterer C, Tautz D (1994) Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol 4:777–783

    Article  CAS  PubMed  Google Scholar 

  • Simon D, Fewer D, Friedl T, Bhattacharya D (2003) Phylogeny and self-splicing ability of the plastid tRNA-Leu group I intron. J Mol Evol 57:710–720

    Article  CAS  PubMed  Google Scholar 

  • Simon DM, Moline J, Helms G, Friedl T, Bhattacharya D (2005) Divergent histories of rDNA group I introns in the lichen family Physciaceae. J Mol Evol (in press)

  • Sipiczki M (2000) Where does fission yeast sit on the tree of life? Genome Biol 1:1011

    Article  Google Scholar 

  • Smith DB, McAllister J, Casino C, Simmonds P (1997) Virus ‘quasispecies’: making a mountain out of a molehill. J Gen Virol 78:1511–1519

    CAS  PubMed  Google Scholar 

  • Soltis PS, Soltis DE (1991) Multiple origins of the allotetraploid Tragopogon mirus (Compositae): rDNA evidence. Syst Bot 16:407–413

    Google Scholar 

  • Spingola M, Grate L, Haussler D, Ares M Jr (1999) Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. RNA 5:221–234

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods) 4.0b8. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tanabe Y, Yokota A, Sugiyama J (2002) Group I introns from Zygomycota: evolutionary implications for the fungal IC1 intron subgroup. J Mol Evol 54:692–702

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  Google Scholar 

  • Tibell L (2003) Tholurna dissimilis and generic delimitations in Caliciaceae inferred from nuclear ITS and LSU rDNA phylogenies (Lecanorales, lichenized ascomycetes). Mycol Res 107:1403–1418

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Brims T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kinoshita Y, Takahagi T, Kroken S, Kurokawa T, Yoshimura I (1998) Factors affecting discharge and germination of lichen ascospores. J Hattori Bot Lab 85:267–278

    Google Scholar 

  • Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes coding for the alpha-chains of hemoglobin. Proc Natl Acad Sci USA 77:2158–2162

    CAS  PubMed  Google Scholar 

  • Zoller S, Lutzoni F, Scheidegger C (1999) Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Mol Ecol 8:2049–2059

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant awarded to D.B. from the National Science Foundation (MCB 01-10252). D.S. was partially supported by a Stanley Fellowship and an Avis E. Cone Fellowship, both from the University of Iowa. We thank Valérie Reeb (Duke University) and François Lutzoni (Duke University) for advice and assistance with initial Physcia collections and Josep Comeron (University of Iowa) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Bhattacharya.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, D.M., Hummel, C.L., Sheeley, S.L. et al. Heterogeneity of intron presence or absence in rDNA genes of the lichen species Physcia aipolia and P. stellaris. Curr Genet 47, 389–399 (2005). https://doi.org/10.1007/s00294-005-0581-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0581-5

Keywords

Navigation