Skip to main content

Advertisement

Log in

Differential gene expression during stationary phase between amicronucleates and micronucleates of the ciliated protist, Pseudourostyla cristata

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Ciliates are unicellular eukaryotic organisms with two types of nuclei, the ‘germline’ micronucleus (MIC) and the ‘somatic’ macronucleus (MAC). We previously reported that when the MIC of Pseudourostyla cristata was eliminated by amputation, the resultant amicronucleate organisms exhibited a lower viability and abnormal oral structures. To gain insight into the genetic reorganization involved in or induced by removal of the MIC and the mechanism by which nuclear dimorphism was established, we investigated gene expression differences between amicronucleates and micronucleates, using suppression subtractive hybridization (SSH) techniques. Approximately 250 clones from each library were screened by cDNA array dot blotting. Altogether, 22 unique genes from the forward-subtractive library (micronucleates as tester, amicronucleates as driver) and 23 unique genes from the reverse-subtractive library (micronucleates as driver and amicronucleates as tester) were shown to be differentially expressed. These 45 differentially expressed genes were found to be homologs of genes involved in various cellular processes including signal transduction, transcription, cell cycle accomplishment and general metabolism, cell structure, and stress response. We highlighted 14 genes, 7 that were unique from both the forward-subtractive and the reverse-subtractive libraries, using real time semi-quantitative RT-PCR. The characterization of these cDNAs represents a starting point in understanding the molecular mechanisms of amicronucleates disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

References

  • Beale GH, Jurand A (1966) Three different types of matekiller (mu) particles in Paramecium aurelia (syngen 1). J Cell Sci 1:31–34

    PubMed  CAS  Google Scholar 

  • Birkhauser V, Basel B, Berlin L (1998) Stress biology: a challenging area in integrated biology. Biol Int 36:18–30

    Google Scholar 

  • Cornillon S, Foa C, Davoust J, Buonavista N, Gross J, Golstein P (1994) Programmed cell death in Dictyostelium. J Cell Sci 107:2691–2704

    PubMed  CAS  Google Scholar 

  • Diatchenko L, Lukyanov S, Lau YF, Siebert PD (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol 303:349–380

    PubMed  CAS  Google Scholar 

  • Fetzer CP, Hogan DJ, Lipps HJ (2002) A PIWI homolog is one of the proteins expressed exclusively during macronuclear development in the ciliate Stylonychia lemnae. Nucleic Acids Res 30:4380–4386

    Article  PubMed  CAS  Google Scholar 

  • Gabai VL, Meriin AB, Yaglom JA, Volloch VZ, Sherman MY (1998) Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett 438:1–4

    Article  PubMed  CAS  Google Scholar 

  • Gonda K, Yoshida A, Oami K, Takahashi M (2004) Centrin is essential for the activity of the ciliary reversal-coupled voltage-gated Ca2+ channels. Biochem Biophys Res Commun 323:891–7

    Article  PubMed  CAS  Google Scholar 

  • Gonda K, Komatsu M, Numata O (2000) Calmodulin and Ca2+/calmodulin-binding proteins are involved in Tetrahymena thermophila phagocytosis. Cell Struct Funct. 25:243–51

    Article  PubMed  CAS  Google Scholar 

  • Grobe K, Poppelmann M, Becker WM., Petersen A (2002) Properties of group I allergens from grass pollen and their relation to cathepsin B, a member of the C1 family of cysteine proteinases. Eur J Biochem 269:2083–2092

    Article  PubMed  CAS  Google Scholar 

  • Haremaki T, Sugai T, Takahashi M. (1996) Involvement of active cellular mechanisms on the disorganization of oral apparatus in amicronucleate cells in Tetrahymena thermophila. Cell Struct Funct 21:73–80

    PubMed  CAS  Google Scholar 

  • Haremaki T, Sugai T, Takahashi M (1995) The vegetative micronucleus has a critical role in maintenance of cortical structure in Tetrahymena thermophila. Cell Struct Funct 20:239–244

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Kikuchi H, Ishizaki S, Tamura A, Tsukahara Y, Nakaoka Y, Iwai E, Sato T (1999) Simple fluctuation of Ca2+ elicits the complex circadian dynamics of cyclic AMP and cyclic GMP in Paramecium. J Cell Sci 112:201–207

    PubMed  CAS  Google Scholar 

  • Katz LA (2001) Evolution of nuclear dualism in ciliates: a reanalysis in light of recent molecular data. Int J Syst Evol Microbiol 51:1587–1592

    PubMed  CAS  Google Scholar 

  • Kirk D (1994) Germ cell specification in Volvox carteri. Ciba Found Symp 182:2–15

    Article  PubMed  CAS  Google Scholar 

  • Jerka DM (1964) Urostyla cristata sp.m.(Urostylidae hypotrichida); the morphlogy an morphogenesis. Acta protozool 2:123–128

    Google Scholar 

  • Jin LP, Ng SF (1989) The somatic function of the germ nucleus in Pseudourostyla cristata: asexual reproduction and stomatogenesis. J Protozool 36:315–326

    Google Scholar 

  • Jin LP, Jin HZ (2002) Micronuclear effect on structural stability of the oral apparatus in hypotrichous ciliate Pseudourostyla cristata. Acta Zoologica Sinica 48:258–263

    Google Scholar 

  • Liu XY, Mao YZ, Chen JH, Lee KL, Jin LP (2004) Total RNA Extraction from Large ciliates. Chin J Zool 39:44–47

    CAS  Google Scholar 

  • Liu XY, Jin LP (2002) A preliminary study on somatic function of micronucleus in Pseudokeronopsis monilata. Zool Res 23:258–260

    CAS  Google Scholar 

  • Liu X, Kin CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt. Method 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Ng SF (1991) Somatic function of the micronucleus of Stylonychia mytilus during asexual propagation. Eur J Protistol 27:26–39

    Google Scholar 

  • Lu E, Wolfe J (2001) Lysosomal enzymes in the macronucleus of Tetrahymena during its apoptosis-like degradation. Cell Death Differ. 8:289–297

    Article  PubMed  CAS  Google Scholar 

  • Martinou JC, Desagher S, Antonsson B (2000) Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol 2:E41–E43

    Article  PubMed  CAS  Google Scholar 

  • Mikami K (1979) Stomatogenesis during sexual and asexual reproduction in an amicronucleate strain of Paramecium caudatum. J Exp. Zool 222:17–26

    Google Scholar 

  • Mikami K, Kuhlmann HW, Heckmann K (1985) Is macronuclear DNA replication dependent on micronuclear function? Exp Cell Res 161:445–459

    Article  PubMed  CAS  Google Scholar 

  • Moreira M, Del Portillo H, Milder R, Balanco J, Barcinski M (1996) Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol 167:305–313

    Article  PubMed  CAS  Google Scholar 

  • Ng SF, Newman A (1982) Isolation of amcironucleate in Paramecium tetraurelia. Acta protozool 21:7–11

    Google Scholar 

  • Ng SF (1986) The somatic function of the micronucleus of ciliated protozoa. Prog Protistol 1:215–286

    Google Scholar 

  • Noguchi M, Kurahashi S, Kamachi H, Inoue H (2004) Control of the ciliary beat by cyclic nucleotides in intact cortical sheets from Paramecium. Zoolog Sci 21:1167–1175

    Article  PubMed  CAS  Google Scholar 

  • Oh IH, Reddy EP (1999) The myb gene family in cell growth, differentiation and apoptosis. Oncogene 18:3017–3033

    Article  PubMed  CAS  Google Scholar 

  • Plattner H, Klauke N (2001) Calcium in ciliated protozoa: sources, regulation, and calcium-regulated cell functions. Int Rev Cytol 201:115–208

    Article  PubMed  CAS  Google Scholar 

  • Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58:233–267

    PubMed  CAS  Google Scholar 

  • Prevarskaya N, Skryma R, Shuba Y (2004) Ca2+ homeostasis in apoptotic resistance of prostate cancer cells. Biochem Biophys Res Commun 322:1326–1335

    Article  PubMed  CAS  Google Scholar 

  • Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Shi XB, Frankel J, 1990. Morphology and development of mirror-image doublets of Stylonychia mytilus. J Protozool. 37:1–13

    PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T (1988) Reorganization in amicronucleates with Defective Mouth of the Ciliate Pseudourostyla levis. J Protozool 35:142–150

    Google Scholar 

  • Villalobo E, Moch C, Fryd-Versavel G, Fleury-Aubusson A, Morin L (2003) Cysteine proteases and cell differentiation: excystment of the ciliated protist Sterkiella histriomuscorum. Eukaryot Cell 2:1234–1245

    Article  PubMed  CAS  Google Scholar 

  • Wellburn S, Murphy N (1998) Prohibitin and RACK homologues are up-regulated in trypanosomes induced to undergo apoptosis and in naturally occurring terminally differentiated forms. Cell Death Differ 5:615–622

    Article  PubMed  CAS  Google Scholar 

  • Wu JJ, Bennett AM (2005) Essential role for mitogen-activated protein (MAP) kinase phosphatase-1 in stress-responsive MAP kinase and cell survival signaling. J Biol Chem 280:16461–16466

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Perasso R, Baroin-Tourancheau A (2003) Myb genes in ciliates: a common origin with the myb protooncogene?. Protist 154:229–238

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Project Number 30370210) to LPJ and an Internal Research Fund from The Hong Kong Polytechnic University to KLDL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Pei Jin.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XY., Lee, KL.D., Mao, YZ. et al. Differential gene expression during stationary phase between amicronucleates and micronucleates of the ciliated protist, Pseudourostyla cristata . Curr Genet 48, 401–411 (2005). https://doi.org/10.1007/s00294-005-0026-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0026-1

Keywords

Navigation