Skip to main content

Gene Expression Analysis in Bacteria by RT-qPCR

  • Protocol
  • First Online:
Quantitative Real-Time PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2065))

Abstract

Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) using fluorescent DNA-binding dyes is now a gold-standard methodology to study bacterial gene expression through relative quantitation of target mRNAs under specific experimental conditions, and recent developments in the technology allow for gene expression analysis in single cells. Nevertheless, several critical steps of the RT-qPCR protocol need to be carefully addressed in order to obtain reliable results, particularly regarding RNA sample quality and appropriate choice of reference genes. Besides, accurate reporting of study conditions is essential, as recommended by the MIQE guidelines. Herein, we provide a practical approach to quantitation of the transcript levels of bacterial genes using RT-qPCR, including a general protocol for obtaining good-quality bacterial RNA and a discussion on the selection and validation of candidate bacterial reference genes for data normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heid CA, Stevens J, Livak KJ et al (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  Google Scholar 

  2. Gibson U, Heid CA, Williams PM (1996) A novel method for real time quantitative RT-PCR. Genome Res 6(10):995–1001

    Article  CAS  Google Scholar 

  3. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques 44(5):619–626

    Article  CAS  Google Scholar 

  4. Martinez AN, Lahiri R, Pittman TL et al (2009) Molecular determination of Mycobacterium leprae viability by use of real-time PCR. J Clin Microbiol 47:2124–2130

    Article  CAS  Google Scholar 

  5. Faucher SP, Porwollik S, Dozois CM et al (2006) Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci 103:1906–1911

    Article  CAS  Google Scholar 

  6. Dumas JL, van Delden C, Perron K et al (2006) Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 254:217–225. https://doi.org/10.1111/j.1574-6968.2005.00008.x

    Article  CAS  PubMed  Google Scholar 

  7. Dror B, Savidor A, Salam BB et al (2019) High levels of CO2 induce spoilage by Leuconostoc mesenteroides by upregulating dextran synthesis genes. Appl Environ Microbiol 85. https://doi.org/10.1128/AEM.00473-18

  8. Graham JE, Wantland NB, Campbell M et al (2011) Characterizing bacterial gene expression in nitrogen cycle metabolism with RT-qPCR. Methods Enzymol 496:345–372. https://doi.org/10.1016/B978-0-12-386489-5.00014-2

    Article  CAS  PubMed  Google Scholar 

  9. Williams PM (2009) The beginnings of real-time PCR. Clin Chem 55(4):833–834. https://doi.org/10.1373/clinchem.2008.122226

    Article  CAS  PubMed  Google Scholar 

  10. Gao W, Zhang W, Meldrum DR (2011) RT-qPCR based quantitative analysis of gene expression in single bacterial cells. J Microbiol Methods 85(3):221–227. https://doi.org/10.1016/j.mimet.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  11. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  12. Bustin SA, Benes V, Garson J et al (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10:1063

    Article  CAS  Google Scholar 

  13. Taylor SC, Mrkusich EM (2014) The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE). J Mol Microbiol Biotechnol 24(1):46–52

    Article  CAS  Google Scholar 

  14. Bustin SA, Beaulieu JF, Huggett J et al (2010) MIQE precis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74. https://doi.org/10.1186/1471-2199-11-74

    Article  PubMed  PubMed Central  Google Scholar 

  15. Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50(4):227–230. https://doi.org/10.1016/j.ymeth.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  16. Taylor S, Wakem M, Dijkman G et al (2010) A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods 50:S1–S5

    Article  CAS  Google Scholar 

  17. Obolenskaya MY, Kuklin A, Rodrigez R et al (2016) Practical approach to quantification of mRNA abundance using RT-qPCR, normalization of experimental data and MIQE. Biopolymers & Cell 32(3):161–172

    Article  Google Scholar 

  18. Rocha DJ, Santos CS, Pacheco LG (2015) Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis. Antonie Van Leeuwenhoek 108(3):685–693. https://doi.org/10.1007/s10482-015-0524-1

    Article  CAS  PubMed  Google Scholar 

  19. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual: three-volume set. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  20. Rasmussen R (2001) Quantification on the LightCycler. In: Rapid cycle real-time PCR. Springer, Heidelberg, pp 21–34

    Chapter  Google Scholar 

  21. Wattam AR, Davis JJ, Assaf R et al (2016) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:D535–D542

    Article  Google Scholar 

  22. Galisa PS, da Silva HA, Macedo AV et al (2012) Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J Microbiol Methods 91:1–7. https://doi.org/10.1016/j.mimet.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  23. Taylor S, Buchanan M, Basik M (2011) A MIQE case study—effect of RNA sample quality and reference gene stability on gene expression data. Bio-Rad Bulletin 6245

    Google Scholar 

  24. Taylor S, Wakem M, Dijkman G et al (2015) A practical approach to RT-qPCR–publishing data that conform to the MIQE guidelines. Bio-Rad Laboratories Inc, Hercules, CA. 94547

    Google Scholar 

  25. Carvalho DM, de Sa PH, Castro TL et al (2014) Reference genes for RT-qPCR studies in Corynebacterium pseudotuberculosis identified through analysis of RNA-seq data. Antonie Van Leeuwenhoek 106:605–614. https://doi.org/10.1007/s10482-014-0231-3

    Article  CAS  PubMed  Google Scholar 

  26. Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54(4):391–406

    Article  CAS  Google Scholar 

  27. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36

    Article  Google Scholar 

  28. BIO-RAD (2018) CFX Maestroâ„¢ Software. http://www.bio-rad.com/en-us/product/cfx-maestro-software-for-cfx-real-time-pcr-instruments?ID=OKZP7E15. Accessed 12 Nov 2018

  29. Pabinger S, Rodiger S, Kriegner A et al (2014) A survey of tools for the analysis of quantitative PCR (qPCR) data. Biomol Detect Quantif 1:23–33. https://doi.org/10.1016/j.bdq.2014.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang B (2014) Coton EST database. http://150.216.56.64/referencegene.php. Accessed 10 Nov 2018

    Google Scholar 

  31. Pfaffl MW, Tichopad A, Prgomet C et al (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  CAS  Google Scholar 

  32. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  33. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  Google Scholar 

  34. Hruz T, Wyss M, Docquier M et al (2011) RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics 12:156. https://doi.org/10.1186/1471-2164-12-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Spiegelaere W, Dern-Wieloch J, Weigel R et al (2015) Reference gene validation for RT-qPCR, a note on different available software packages. PLoS One 10:e0122515. https://doi.org/10.1371/journal.pone.0122515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in our group is supported by grants from Fundação de Amparo à Pesquisa no Estado da Bahia (FAPESB), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G. C. Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rocha, D.J.P.G., Castro, T.L.P., Aguiar, E.R.G.R., Pacheco, L.G.C. (2020). Gene Expression Analysis in Bacteria by RT-qPCR. In: Biassoni, R., Raso, A. (eds) Quantitative Real-Time PCR. Methods in Molecular Biology, vol 2065. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9833-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9833-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9832-6

  • Online ISBN: 978-1-4939-9833-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics